Advertisement

Fibers and Polymers

, Volume 20, Issue 1, pp 25–34 | Cite as

Photocatalytic Self-cleaning by Nanocomposite Fibers Containing Titanium Dioxide Nanoparticles

  • Taeyoung Jeong
  • Seungsin LeeEmail author
Article

Abstract

Titanium dioxide (TiO2), a well-known photocatalyst, was incorporated into poly(vinyl alcohol) (PVA) nanofibers via electrospinning to develop self-cleaning textile materials that can decompose organic contaminants and stains on the textile surface by light irradiation. TiO2/PVA nanocomposite fiber webs were prepared from PVA solutions that contained 5, 10, and 20 wt% TiO2 nanoparticles. The morphologies and chemical compositions of the composite fibers were characterized using scanning electron microscopy, transmission electron microscopy, and an energy dispersive X-ray analysis system. The TiO2/PVA nanocomposite fiber webs were thermally treated to increase their stability in an aqueous environment. To evaluate the self-cleaning performance, the fiber webs were saturated using a methylene blue dye solution and red wine. Different light sources, i.e., ultraviolet (UV) light, visible light, and fluorescent light, were used to examine their effects on the photocatalytic self-cleaning activities of the TiO2/PVA nanocomposite fiber webs. The color changes of the methylene blue and red wine stains on the fiber webs were assessed with the time of light exposure over a period of 24 h. The results depicted that the decomposition rates of the methylene blue and red wine stains by the fiber webs varied in the order of fluorescent light < visible light < UV light. Generally, the decomposition rate increased by increasing the time of light exposure and the TiO2 concentration. Our findings demonstrated the self-cleaning performance of the electrospun composite fibers containing TiO2 nanoparticles not only under UV light but also under visible and fluorescent light that are commonly used indoors.

Keywords

Photocatalysis Self-cleaning Titanium dioxide Nanocomposite fiber Electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Parkin and R. G. Palgrave, J. Mater. Chem., 15, 1689 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Fujishima and X. Zhang, C. R. Chimie., 9, 750 (2006).CrossRefGoogle Scholar
  3. 3.
    W. S. Tung and W. A. Daoud, J. Mater. Chem., 21, 7858 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Pal, S. O. Pehkonen, L. E. Yu, and M. B. Ray, J. Photochem. Photobiol. A, 186, 335 (2007).CrossRefGoogle Scholar
  5. 5.
    M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Behnemann, Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
  6. 6.
    H. D. Jang, S. K. Kim, and S. J. Kim, J. Nanopart. Res., 3, 141 (2001).CrossRefGoogle Scholar
  7. 7.
    N. S. Allen, N. Mahdjoub, V. Vishnyakov, P. J. Kelly, and R. J. Kriek, Polym. Degrad. Stabil., 150, 31 (2018).CrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Zhao, L. Sun, and X. Wang, Text. Res. J., 85, 1104 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Benedix, F. Dehn, J. Quaas, and M. Orgass, Lacer, 5, 157 (2000).Google Scholar
  10. 10.
    W. A. Daoud and J. H. Xin, J. Am. Ceram. Soc., 87, 953 (2004).CrossRefGoogle Scholar
  11. 11.
    K. Qi, X. Wang, and J. H. Xin, Text. Res. J., 81, 101 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Bozzi, T. Yuranova, and J. Kiwi, J. Photochem. Photobiol. A, 172, 27 (2005).CrossRefGoogle Scholar
  13. 13.
    M. I. Mejia, J. M. Marin, G. Restrepo, C. Pulgarin, E. Mielczarski, J. Mielczarski, Y. Arroyo, J.-C. Lavanchy, and J. Kiwi, Appl. Catal. B-Environ., 91, 481 (2009).CrossRefGoogle Scholar
  14. 14.
    K. T. Meilert, D. Laub, and J. Kiwi, J. Mol. Catal. A: Chem., 237, 101 (2005).CrossRefGoogle Scholar
  15. 15.
    Z. Liuxue, W. Xiulian, L. Peng, and S. Zhixing, Surf. Coat. Tech., 201, 7607 (2007).CrossRefGoogle Scholar
  16. 16.
    N. Veronovski, A. Rudolf, M. S. Smole, T. Kreže, and J. Geršak, Fiber. Polym., 10, 551 (2009).CrossRefGoogle Scholar
  17. 17.
    A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed., 46, 5670 (2007).CrossRefGoogle Scholar
  18. 18.
    J. W. Yoon, Y. Park, J. Kim, and C. H. Park, Fash. Text., 4, 9 (2017).CrossRefGoogle Scholar
  19. 19.
    J. Zeng, J. Sun, H. Hou, R. Dersch, H. Wickel, J. H. Wendorff, and A. Greiner in “Polymeric Nanofibers” (D. H. Reneker and H. Fong Eds.), pp.163–172, American Chemical Society, Oxford University Press, Washington, DC, 2006.Google Scholar
  20. 20.
    N. M. Bedford and A. J. Steckl, ACS Appl. Mater. Inter., 2, 2448 (2010).CrossRefGoogle Scholar
  21. 21.
    C. J. Hurren, R. T. Liu, X. Liu, and X. G. Wang in “Advances in Science and Technology” (P. Vincenzini and R. Paradiso Eds.), Vol. 60, pp.111–116, Trans Tech Publications, 2008.Google Scholar
  22. 22.
    H. J. Lee, J. Kim, and C. H. Park, Text. Res. J., 84, 267 (2014).CrossRefGoogle Scholar
  23. 23.
    L. Caballero, K. A. Whitehead, N. S. Allen, and J. Verran, J. Photochem. Photobiol. A, 202, 92 (2009).CrossRefGoogle Scholar
  24. 24.
    C. Wei, W. Y. Lin, Z. Zainal, N. E. Williams, K. Zhu, A. P. Kruzic, R. L. Smith, and K. Rajeshwar, Environ. Sci. Technol., 28, 934 (1994).CrossRefGoogle Scholar
  25. 25.
    K. Lee and S. Lee, J. Appl. Polym. Sci., 124, 4038 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Clothing and TextilesYonsei UniversitySeoulKorea

Personalised recommendations