Fibers and Polymers

, Volume 20, Issue 1, pp 35–44 | Cite as

Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection

  • M. B. Azizkhani
  • J. KadkhodapourEmail author
  • Sh. Rastgordani
  • A. P. Anaraki
  • B. Shirkavand Hadavand


Strain sensing in applications such as soft robotic, human motion detection, health and sports monitoring, mass measurement, human-machine interfaces has attracted increasing attention. In the present paper, a piezoresistive composite strain sensor based on chopped carbon fiber (CCF) as a conductive element and silicone rubber as a stretchable polymeric matrix was introduced. The results of the electromechanical evaluation under cyclic loading suggest high sensitivity (maximum gauge factor of 50) within the strain amplitudes of up to 25 %. The nonlinear electromechanical behavior of the CCF/silicone strain sensors revealed a positive-to-negative piezoresistivity due to the deformation mechanisms including axial deformation, Poisson’s effect, and viscoelastic characteristics. The sensors were employed to monitor human joint motion detection at the wrist, knee, as well as the elbow. The results showed high reversibility and strong sensing performance in action. The results showed that the fabricated sensors could be integrated with human textiles to record the motion data as the signals were observed to be well stable and highly sensitive to both small and large deformations induced by human motion.


Piezoresistive composite strain sensor Carbon fiber Electromechanical characteristics Human motion monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Ho, Y. Ling, L. W. Yap, Y. Wang, D. Dong, Y. Zhao and W. Cheng, Adv. Funct. Mater., 27, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    J. H. Kong, N. S. Jang, S. H. Kim, and J. M. Kim, Carbon N. Y., 77, 199 (2014).CrossRefGoogle Scholar
  3. 3.
    S. R. Kim, J. H. Kim, and J. W. Park, ACS Appl., 9, 26407 (2017).CrossRefGoogle Scholar
  4. 4.
    U. H. Shin, D. W. Jeong, S. M. Park, S. H. Kim, H. W. Lee, and J. M. Kim, Carbon N. Y., 80, 396 (2014).CrossRefGoogle Scholar
  5. 5.
    S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, J. Neuroeng. Rehabil., 9, 21 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Pinto, L. Cai, C. Wang, and X. Tan, Int. J. Intell. Robot. Appl., 1, 157 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Majidi, Soft Robot., 1, 5 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Cao, X. Wei, G. Li, C. Hu, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen, and Z. Guo, Polym. (United Kingdom), 112, 1 (2017).Google Scholar
  9. 9.
    Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, and H. Zhu, Adv. Funct. Mater., 24, 4666 (2014).CrossRefGoogle Scholar
  10. 10.
    J. F. Christ, C. J. Hohimer, N. Aliheidari, A. Ameli, C. Mo, and P. Pötschke, Proceedings of the SPIE, 10168, 101680 (2017).Google Scholar
  11. 11.
    H. Lee, B. Seong, H. Moon, and D. Byun, RSC Adv., 5, 28379 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Deng, M. Ji, D. Yan, S. Fu, L. Duan, M. Zhang, and Q. Fu, J. Mater. Chem. A, 2, 10048 (2014).CrossRefGoogle Scholar
  13. 13.
    J. Zhao, C. He, R. Yang, Z. Shi, M. Cheng, W. Yang, G. Xie, D. Wang, D. Shi, and G. Zhang, Appl. Phys. Lett., 101, 2010 (2012).Google Scholar
  14. 14.
    J. J. Park, W. J. Hyun, S. C. Mun, Y. T. Park, and O. O. Park, ACS Appl. Mater. Interfaces, 7, 6317 (2015).CrossRefGoogle Scholar
  15. 15.
    C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, ACS Nano, 8, 8819 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. H. Jeong, E. Lee, J. Y. Lee, and I. Park, Small, 10, 4171 (2014).Google Scholar
  17. 17.
    C. Deng, L. Pan, R. Cui, C. Li, and J. Qin, J. Mater. Sci. Mater. Electron., 28, 3535 (2017).CrossRefGoogle Scholar
  18. 18.
    J. Ren, X. Du, W. Zhang, and M. Xu, RSC Adv., 7, 22619 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Song, J. Zhang, D. Chen, K. Wang, S. Niu, Z. Han, and L. Ren, Nanoscale, 9, 1166 (2017).CrossRefGoogle Scholar
  20. 20.
    X.-G. Yu, Y.-Q. Li, W.-B. Zhu, P. Huang, T.-T. Wang, N. Hu, and S.-Y. Fu, Nanoscale, 9, 6680 (2017).CrossRefGoogle Scholar
  21. 21.
    G. Cai, J. Wang, K. Qian, J. Chen, S. Li, and P. S. Lee, Adv. Sci., 4, 2 (2017).Google Scholar
  22. 22.
    L. Wang, C. Xu, and Y. Li, Sensors Actuators, A Phys., 189, 45 (2013).CrossRefGoogle Scholar
  23. 23.
    T. Giffney, E. Bejanin, A. S. Kurian, J. Travas-Sejdic, and K. Aw, Sensors Actuators A Phys., 259, 44 (2017).CrossRefGoogle Scholar
  24. 24.
    S. Wu, R. B. Ladani, J. Zhang, K. Ghorbani, X. Zhang, A. P. Mouritz, A. J. Kinloch, and C. H. Wang, ACS Appl. Mater. Interfaces, 8, 24853 (2016).CrossRefGoogle Scholar
  25. 25.
    Q. Sun, W. Seung, B. J. Kim, S. Seo, S. W. Kim, and J. H. Cho, Adv. Mater., 27, 3411 (2015).CrossRefGoogle Scholar
  26. 26.
    A. Bouhamed, A. Al-Hamry, C. Müller, S. Choura, and O. Kanoun, Compos. Part B-Eng., 128, 91 (2017).CrossRefGoogle Scholar
  27. 27.
    S. Yao and Y. Zhu, Nanoscale, 6, 2345 (2014).CrossRefGoogle Scholar
  28. 28.
    H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, and Z. Guo, Nanoscale, 8, 12977 (2016).CrossRefGoogle Scholar
  29. 29.
    S. Khan, L. Lorenzelli, and R. S. Dahiya, IEEE Sens. J., 15, 3164 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, ACS Nano, 8, 5154 (2014).CrossRefGoogle Scholar
  31. 31.
    B. G. Han, B. Z. Han, and J. P. Ou, Sensors Actuators, A Phys., 149, 51 (2009).CrossRefGoogle Scholar
  32. 32.
    Y. Zhu, Y. Hu, P. Zhu, T. Zhao, X. Liang, R. Sun, and C. Wong, New J. Chem., 41, 4950 (2017).CrossRefGoogle Scholar
  33. 33.
    C. Q. Yang, X. L. Wang, Y. J. Jiao, Y. L. Ding, Y. F. Zhang, and Z. S. Wu, Compos. Part B-Eng., 102, 86 (2016).CrossRefGoogle Scholar
  34. 34.
    J. Zhao, K. Dai, C. Liu, G. Zheng, B. Wang, C. Liu, J. Chen, and C. Shen, Compos. Part A-Appl. Sci. Manuf., 48, 129 (2013).CrossRefGoogle Scholar
  35. 35.
    D. Y. Choi, M. H. Kim, Y. S. Oh, S.-H. Jung, J. H. Jung, H. J. Sung, H. W. Lee, and H. M. Lee, ACS Appl. Mater. Interfaces, 9, 1770 (2017).CrossRefGoogle Scholar
  36. 36.
    M. S. Zarei, M. B. Azizkhani, M. H. Hajmohammad, and R. Kolahchi, J. Sandw. Struct. Mater., 109963621774328 (2017).Google Scholar
  37. 37.
    Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, and C. Shen, Compos. Sci. Technol., 139, 64 (2017).CrossRefGoogle Scholar
  38. 38.
    J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu, and I. Park, Nanoscale, 6, 11932 (2014).CrossRefGoogle Scholar
  39. 39.
    Y. R. Jeong, H. Park, S. W. Jin, S. Y. Hong, S. S. Lee, and J. S. Ha, Adv. Funct. Mater., 25, 4228 (2015).CrossRefGoogle Scholar
  40. 40.
    D. S. A. De Focatiis, D. Hull, and A. Sánchez-Valencia, Plast. Rubber Compos., 41, 309 (2012).CrossRefGoogle Scholar
  41. 41.
    S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim, ACS Nano., 9, 5929 (2015).CrossRefGoogle Scholar
  42. 42.
    C. Lozano-Pérez, J. V. Cauich-Rodríguez, and F. Avilés, Compos. Sci. Technol., 128, 25 (2016).CrossRefGoogle Scholar
  43. 43.
    M. Amjadi, Y. J. Yoon, and I. Park, Nanotechnology, 26, 375501 (2015).CrossRefGoogle Scholar
  44. 44.
    H. Souri, I. W. Nam, and H. K. Lee, Compos. Sci. Technol., 121, 41 (2015).CrossRefGoogle Scholar
  45. 45.
    , N. Hu, H. Fukunaga, S. Atobe, Y. Liu, and J. Li, Sensors, 11, 10691 (2011).CrossRefGoogle Scholar
  46. 46.
    T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi D. Futaba and K. Hata, Nat. Nanotechnol., 6, 296 (2011).CrossRefGoogle Scholar
  47. 47.
    D. J. Cohen, D. Mitra, K. Peterson, and M. M. Maharbiz, Nano Lett., 12, 1821 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • M. B. Azizkhani
    • 1
  • J. Kadkhodapour
    • 1
    Email author
  • Sh. Rastgordani
    • 1
  • A. P. Anaraki
    • 1
  • B. Shirkavand Hadavand
    • 2
  1. 1.Mechanical Engineering DepartmentShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Department of Resin and AdditivesInstitute for Color Science and TechnologyTehranIran

Personalised recommendations