Advertisement

Fibers and Polymers

, Volume 20, Issue 1, pp 45–50 | Cite as

Effect of Degumming Methods on the Degradation Behavior of Silk Fibroin Biomaterials

  • Luping Wang
  • Zuwei Luo
  • Qiang Zhang
  • Yupin Guan
  • Junyi Cai
  • Renchuan YouEmail author
  • Xiufang LiEmail author
Article

Abstract

Degradation behavior is a key consideration in the field of silk fibroin (SF) biomaterials. Degumming to remove sericin is a prerequisite for SF purification; however, the impact of degumming on the degradation behavior of SF biomaterials has not been established. In this study, two different degumming systems, Na2CO3 and NaHCO3, were used. Na2CO3 exhibited higher degumming efficiency but caused greater degradation of the fibroin. The results demonstrated that NaHCO3 degumming could afford regenerated SF with higher molecular weight, resulting in SF films with higher mechanical strengths. The enzymatic degradation behaviors indicated that the SF films prepared by the Na2CO3 degumming process showed faster degradation, revealing that the choice of degumming method has a substantial impact on the biodegradation of SF-based materials. The results showed that manipulating the degumming conditions can be used to tune the molecular weight of the SF, in turn providing control over the degradation rate of SF biomaterials.

Keywords

Silk biomaterials Degumming Molecular weight Degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Thurber, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 71, 145 (2015).CrossRefGoogle Scholar
  2. 2.
    X. Li, R. You, Z. Luo, G. Chen, and M. Li, J. Mater. Chem. B, 4, 2903 (2016).CrossRefGoogle Scholar
  3. 3.
    H. Han, H. Ning, S. Liu, Q. P. Lu, Z. Fan, H. Lu, G. Lu, and D. L. Kaplan, Adv. Funct. Mater., 26, 421 (2016).CrossRefGoogle Scholar
  4. 4.
    B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug. Deliv. Rev., 65, 457 (2013).CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, S. Chen, R. You, Z. Tariq, J. Huang, M. Li, and S. Yan, Fiber. Polym., 18, 1056 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Cao and B. Wang, Int. J. Mol. Sci., 10, 1514 (2009).CrossRefGoogle Scholar
  7. 7.
    R. You, Y. Xu, G. Liu, Y. Liu, X. Li, and M. Li, Polym. Degrad. Stab., 109, 226 (2014).CrossRefGoogle Scholar
  8. 8.
    R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 10, 015003 (2014).CrossRefGoogle Scholar
  9. 9.
    Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).CrossRefGoogle Scholar
  10. 10.
    Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 12, 1080 (2011).CrossRefGoogle Scholar
  11. 11.
    H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, Adv. Funct. Mater., 15, 1241 (2005).CrossRefGoogle Scholar
  12. 12.
    X. Li, J. Zhang, Y. Feng, S. Yan, Q. Zhang, and R. You, Polym. Degrad. Stab., 147, 57 (2018).CrossRefGoogle Scholar
  13. 13.
    B. Kundu, N. E. Kurland, V. K. Yadavalli, and S. C. Kundu, Int. J. Biol. Macromol., 70, 70 (2014).CrossRefGoogle Scholar
  14. 14.
    B. J. Allardyce, R. Rajkhowa, R. J. Dilley, M. D. Atlas, J. Kaur, and X. Wang, Text. Res. J., 86, 275 (2015).CrossRefGoogle Scholar
  15. 15.
    K. Liang, Y. Gong, J. Fu, S. Yan, Y. Tan, R. Du, X. Xing, G. Mo, Z. Chen, Q. Cai, D. Sun, and Z. Wu, Int. J. Biol. Macromol., 57, 99 (2013).CrossRefGoogle Scholar
  16. 16.
    M. Ho, H. Wang, and K. Lau, Appl. Surf. Sci., 258, 3948 (2012).CrossRefGoogle Scholar
  17. 17.
    R. Rajkhowa, L. Wang, J. R. Kanwar, and X. G. Wang, J. Appl. Polym. Sci., 119, 1339 (2011).CrossRefGoogle Scholar
  18. 18.
    G. B. Perea, C. Solanas, N. Marí-Buyé, R. Madurga, F. Agulló-Rueda, A. Muinelo, C. Riekel, M. Burghammer, I. Jorge, J. Vázquez, G. R. Plaza, A. L. Torres, F. del Pozo, G. V. Guinea, M. Elices, J. L. Cenis, and J. Pérez-Rigueiro, Eur. Polym. J., 78, 129 (2016).CrossRefGoogle Scholar
  19. 19.
    H. Yamada, H. Nakao, Y. Takasu, and K. Tsubouchi, Mater. Sci. Eng., C, 14, 41 (2001).CrossRefGoogle Scholar
  20. 20.
    Q. Wang, Q. Chen, Y. Yang, and Z. Shao, Biomacromolecules, 14, 285 (2013).CrossRefGoogle Scholar
  21. 21.
    H. Wang and Y. Zhang, Soft Matter, 9, 138 (2013).CrossRefGoogle Scholar
  22. 22.
    J. S. Ko, K. Yoon, C. S. Ki, H. J. Kim, D. G. Bae, K. H. Lee, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 55, 161 (2013).CrossRefGoogle Scholar
  23. 23.
    K. Yoon, H. N. Lee, C. S. Ki, D. Fang, B. S. Hsiao, B. Chu, and I. C. Um, Int. J. Biol. Macromol., 61, 50 (2013).CrossRefGoogle Scholar
  24. 24.
    H. J. Kim and I. C. Um, Int. J. Biol. Macromol., 67, 387 (2014).CrossRefGoogle Scholar
  25. 25.
    B. K. Park and I. C. Um, Int. J. Biol. Macromol., 106, 1166 (2018).CrossRefGoogle Scholar
  26. 26.
    J. S. Ko, C. S. Ki, and I. C. Um, Fiber. Polym., 19, 507 (2018).CrossRefGoogle Scholar
  27. 27.
    C. S. Ki, J. W. Kim, H. J. Oh, K. H. Lee, and Y. H. Park, Int. J. Biol. Macromol., 41, 346 (2007).CrossRefGoogle Scholar
  28. 28.
    H. J. Kim, M. K. Kim, K. H. Lee, S. K. Nho, M. S. Han, and I. C. Um, Int. J. Biol. Macromol., 104, 294 (2017).CrossRefGoogle Scholar
  29. 29.
    J. H. Lee, D. W. Song, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 89, 273 (2016).CrossRefGoogle Scholar
  30. 30.
    K. Nultsch and O. Germershaus, Eur. J. Pharm. Sci., 106, 254 (2017).CrossRefGoogle Scholar
  31. 31.
    R. You, Y. Zhang, Y. Liu, G. Liu, and M. Li, Nat. Sci., 05, 10 (2013).Google Scholar
  32. 32.
    C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).CrossRefGoogle Scholar
  33. 33.
    Z. Chen, D. Rana, T. Matsuura, D. Meng, and C. Q. Lan, Chem. Eng. J., 276, 174 (2015).CrossRefGoogle Scholar
  34. 34.
    H. H. Kim, D. W. Song, M. J. Kim, S. J. Ryu, I. C. Um, C. S. Ki, and Y. H. Park, Polymer, 90, 26 (2016).CrossRefGoogle Scholar
  35. 35.
    J. U. Furst, K. Buse, I. Breunig, P. Becker, J. Liebertz, and L. Bohaty, Opt. Lett., 40, 1932 (2015).CrossRefGoogle Scholar
  36. 36.
    J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science and EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations