Fibers and Polymers

, Volume 20, Issue 1, pp 11–18 | Cite as

Uniform Micellization: The Key to Enhanced Mechanical Strength and Swelling Efficiency of Chitosan Hydrogel

  • Bijan Nasri-Nasrabadi
  • Akif Kaynak
  • Cynthia Wong
  • Pejman Heidarian
  • Khashayar Badii
  • Abbas Z. KouzaniEmail author


The fabrication of hydrophilic porous hydrogel, with high mechanical strength and good uptake capacity is desirable for a broad range of applications such as drug delivery and liquid sensors. The usual methods are limited to the production of structures with high density of covalently crosslinked networks that restricts the polymer chain rearrangement, resulting in non-uniformed pore size distribution. Covalent networks also limit the activity of functional groups and influence the uptake properties of the polymer. In this study, we proposed simple cyclic cryogelation for the fabrication of hydrogels with uniform pore sizes via controlling the micellization and crystal formation. The chitosan based hydrogels ionically crosslinked with 8 % (w/v) of tripoli phosphate sodium (TPP) displayed high Young’s modulus (63 MPa) after cyclic freezethawing. The liquid uptake capacity of the samples treated with 8 % (w/v) TPP solution at pH 4 showed a slight decrease of about 29 % in comparison to that of non-cyclic processed samples (36 %).


Chitosan hydrogel Tripoly phosphate sodium Freeze-thawing Uniform porosity Cyclic cryogelation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.-H. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, and S. Li, Polymers, 8, 252 (2016).CrossRefGoogle Scholar
  2. 2.
    J. R. Moon and J. H. Kim, Polym. Int., 59, 630 (2010).Google Scholar
  3. 3.
    H. P. James, R. John, A. Alex, and K. Anoop, Acta Pharm. Sin. B., 4, 120 (2014).CrossRefGoogle Scholar
  4. 4.
    I. M. El-Sherbiny and M. H. Yacoub, Glob. Cardiol. Sci. Pract., 2013, 316 (2013).Google Scholar
  5. 5.
    O. Philippova and E. Korchagina, Polym. Sci., Ser. A, 54, 552 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Beppu, R. Vieira, C. Aimoli, and C. Santana, J. Memb. Sci., 301, 126 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Kiuchi, W. Kai, and Y. Inoue, J. Appl. Polym. Sci., 107, 3823 (2008).CrossRefGoogle Scholar
  8. 8.
    M. J. Khan, J. Zhang, and Q. Guo, Chem. Eng. J., 301, 92 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Shen, J. L. Shamshina, P. Berton, G. Gurau, and R. D. Rogers, Green Chem., 18, 53 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Khan and N. M. Ranjha, Polym. Bull., 71, 2133 (2014).CrossRefGoogle Scholar
  11. 11.
    B. Smitha, S. Sridhar, and A. Khan, Eur. Polym. J., 41, 1859 (2005).CrossRefGoogle Scholar
  12. 12.
    L. D. Harris, B.-S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998).CrossRefGoogle Scholar
  13. 13.
    I. N. Savina, G. C. Ingavle, A. B. Cundy, and S. V. Mikhalovsky, Sci. Rep., 6, 21154 (2016).CrossRefGoogle Scholar
  14. 14.
    W. W. Ngah and S. Fatinathan, J. Environ. Manage., 91, 958 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Sureshkumar, D. Das, M. Mallia, and P. Gupta, J. Hazard. Mater., 184, 65 (2010).CrossRefGoogle Scholar
  16. 16.
    N. Csaba, M. Köping-Höggård, and M. J. Alonso, Int._J. Pharm., 382, 205 (2009).CrossRefGoogle Scholar
  17. 17.
    I. N. Savina, V. M. Gun'ko, V. V. Turov, M. Dainiak, G. J. Phillips, I. Y. Galaev, and S. V. Mikhalovsky, Soft Matter, 7, 4276 (2011).CrossRefGoogle Scholar
  18. 18.
    M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, Chem. Mater., 20, 634 (2008).CrossRefGoogle Scholar
  19. 19.
    B. P. Panda, S. Mohanty, and S. Nayak, Chin. J. Chem. Eng. 2013, Article ID 245718 (2013).Google Scholar
  20. 20.
    D. R. Bhumkar and V. B. Pokharkar, J. Am. Pharm. Assoc., 7, E138 (2006).Google Scholar
  21. 21.
    P. Severino, C. F. da Silva, M. A. da Silva, M. H. Santana, and E. B. Souto, Sugar Tech., 18, 49 (2016).Google Scholar
  22. 22.
    V. S. Joshi and M. J. Joshi, Cryst. Res. Technol., 38, 817 (2003).CrossRefGoogle Scholar
  23. 23.
    M. G. Pineda, S. Torres, L. V. López, F. J. Enríquez-Medrano, R. D. de León, S. Fernández, H. Saade, and R. G. López, Molecules, 19, 9273 (2014).CrossRefGoogle Scholar
  24. 24.
    B. Nasri-Nasrabadi, T. Behzad, and R. Bagheri, Fiber. Polym., 15, 347 (2014).CrossRefGoogle Scholar
  25. 25.
    T. Dursch, D. Liu, Y. Oh, and C. Radke, Acta Biomater., 15, 48 (2015).CrossRefGoogle Scholar
  26. 26.
    S. L. Jahren, M. F. Butler, S. Adams, and R. E. Cameron, Macromol. Chem. Phys., 211, 644 (2010).CrossRefGoogle Scholar
  27. 27.
    P. J. Flory, N. Rabjohn, and M. C. Shaffer, J. Polym. Sci., 4, 225 (1949).CrossRefGoogle Scholar
  28. 28.
    M. Guvendiren, S. Yang, and J. A. Burdick, Adv. Funct. Mater., 19, 3038 (2009).CrossRefGoogle Scholar
  29. 29.
    J.-H. Chang, C.-L. Chen, A. V. Ellis, and C.-H. Tung, Int. J. Sci. Eng., 10, 293 (2012).Google Scholar
  30. 30.
    R. Hejazi and M. Amiji, J. Control. Release, 89, 151 (2003).CrossRefGoogle Scholar
  31. 31.
    P. Jiang, K. Hwang, D. Mittleman, J. Bertone, and V. Colvin, J. Am. Chem. Soc., 121, 11630 (1999).CrossRefGoogle Scholar
  32. 32.
    N. Adrus and M. Ulbricht, J. Mater. Chem., 22, 3088 (2012).CrossRefGoogle Scholar
  33. 33.
    N. Syuhada, N. Huang, S. Vijay Kumar, H. Lim, S. Rahman, G. Thien, N. Ibrahim, M. Ahmad, and P. Moradihamedani, Sains Malays., 43, 851 (2014).Google Scholar
  34. 34.
    A. A. Alhwaige, T. Agag, H. Ishida, and S. Qutubuddin, Biomacromolecules, 14, 1806 (2013).CrossRefGoogle Scholar
  35. 35.
    B. Nasri-Nasrabadi, A. Kaynak, Z. K. Nia, and A. Kouzani, Cellulose, 25, 549 (2018).CrossRefGoogle Scholar
  36. 36.
    L. Zhang, J. Zhao, J. Zhu, C. He, and H. Wang, Soft Matter, 8, 10439 (2012).CrossRefGoogle Scholar
  37. 37.
    S. Balakrishnan, P. Start, D. Raghavan, and S. D. Hudson, Polymer, 46, 11255 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Bijan Nasri-Nasrabadi
    • 1
  • Akif Kaynak
    • 1
  • Cynthia Wong
    • 2
  • Pejman Heidarian
    • 1
  • Khashayar Badii
    • 2
  • Abbas Z. Kouzani
    • 1
    Email author
  1. 1.School of EngineeringDeakin UniversityGeelong, VictoriaAustralia
  2. 2.Institute for Frontier MaterialsDeakin UniversityGeelong, VictoriaAustralia

Personalised recommendations