Fibers and Polymers

, Volume 20, Issue 1, pp 165–176 | Cite as

Influence of Crosslinking Density on Antioxidant Nanocellulose in Bio-degradation and Mechanical Properties of Nitrile Rubber Composites

  • Mohamad Nurul Azman Mohammad Taib
  • Wageeh A. Yehye
  • Nurhidayatullaili Muhd JulkapliEmail author


Nanocellulose antioxidant (Aox-NCC) was used as reinforcement and crosslinking agent in nitrile butadiene rubber (NBR) composites. The crosslinking density and volume of rubber bonded in the matrix were increased up to 3 phr and no significant improvement between 4 phr and 5 phr was recorded. The interactions of gallic acid and NCC was found to occur between the -OH and -COOH groups, as revealed by Fourier Transform Infra-Red (FTIR) and Nuclear Magnetic Resonance (NMR) analysis. Crystallinity index of Aox-NCC was increased more than 11 %, recorded by X-ray diffraction (XRD) analysis. Meanwhile, the thermal stability of Aox-NCC was increased 30°C, analyzed by thermogravimetry (TG). With the addition of 3 phr Aox-NCC, tensile strength and modulus at 500 % for NBR composites were increased significantly up to 20 %. There was no significant improvement on modulus at 100 %, modulus at 300 %, elongation at break and tear strength. The degradability of NBR composites within 6 months period was improved significantly at 5 phr of Aox- NCC. Increase in carbonyl group after soil burial test with the existence of cracks, voids and degradable parts of NBR composites were revealed. This demonstrated that, Aox-NCC plays a secure function to reinforce NBR composites.


Cellulose Nanocrystals Biodegradable Composites Morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Lu and Y.-L. Hsieh, Carbohydr. Polym., 82, 329 (2010).CrossRefGoogle Scholar
  2. 2.
    X. Wang, P. Qu, and L. Zhang, Fiber. Polym., 15, 302 (2014).CrossRefGoogle Scholar
  3. 3.
    A. L. S. S. Pereira, D. M. do Nascirnento, M. D. M. M. Souza, J. P. S. S. Moraisd, N. F. Vasconcelos, J. P. A. A. Feitosa, A. I. S. S. Brigida, and M. D. Rosa, Carbohydr. Polym., 112, 165 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Araki, Soft Mater., 9, 4125 (2013).CrossRefGoogle Scholar
  5. 5.
    K.-Y. Lee, Y. Aitomäki, L. A. Berglund, K. Oksman, and A. Bismarck, Compos. Sci. Technol., 105, 15 (2014).CrossRefGoogle Scholar
  6. 6.
    L. V. Abad, L. S. Relleve, C. T. Aranilla, A. K. Aliganga, C. M. San Diego, and A. M. dela Rosa, Polym. Degrad. Stabil., 76, 275 (2002).CrossRefGoogle Scholar
  7. 7.
    K. M. Z. Z. Hossain, N. Sharif, N. Dafader, M. Haque, and A. Chowdhury, ISRN Polym. Sci., 2013 (2013).Google Scholar
  8. 8.
    A. Ikram, M. Ma Azam, M. Amir Hashim, M. Fauzi, A. Shamsul Bahri, and S. Kamaruzaman, J. Rubber Res., 8, 220 (2005).Google Scholar
  9. 9.
    R. N. Phalen, T. Le, and W. K. Wong, J. Occup. Environ. Hyg., 11, 716 (2014).CrossRefGoogle Scholar
  10. 10.
    M. M. Aliabadi, G. Naderi, S. J. Shahtaheri, A. R. Forushani, I. Mohammadfam, and M. Jahangiri, Iran. Polym. J., 23, 289 (2014).CrossRefGoogle Scholar
  11. 11.
    Z. Wei, Y. L. Lu, Y. Meng, and L. Q. Zhang, J. Appl. Polym. Sci., 124, 4564 (2012).Google Scholar
  12. 12.
    Y. K. Chen, C. H. Xu, and Y. P. Wang, J. Reinf. Plast. Compos., 31, 705 (2012).CrossRefGoogle Scholar
  13. 13.
    C. Sirisinha and N. Prayoonchatphan, Plast. Rubber Compos., 30, 24 (2001).CrossRefGoogle Scholar
  14. 14.
    M. M. Salehi, T. Khalkhali, and A. A. Davoodi, Polym. Sci. Ser. A, 58, 567 (2016).CrossRefGoogle Scholar
  15. 15.
    V. K. Singh, A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, Carbon, 50, 2202 (2012).CrossRefGoogle Scholar
  16. 16.
    D. E. El-Nashar and E. M. Sadek, High Perform. Polym., 24, 664 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Mohamed, T. Ardyani, S. A. Bakar, P. Brown, M. Hollamby, M. Sagisaka, and J. Eastoe, Adv. Colloid Interface Sci., 230, 54 (2016).CrossRefGoogle Scholar
  18. 18.
    L. D. Perez, M. A. Zuluaga, T. Kyu, J. E. Mark, and B. L. Lopez, Polym. Eng. Sci., 49, 866 (2009).CrossRefGoogle Scholar
  19. 19.
    P. A. Carson, “Hazardous Chemicals Handbook”, Butterworth-Heinemann, 2002.Google Scholar
  20. 20.
    X. Ge, M. C. Li, X. X. Li, and U. R. Cho, Appl. Clay Sci., 118, 265 (2015).CrossRefGoogle Scholar
  21. 21.
    M. Liu, Q. Peng, B. Luo, and C. Zhou, Eur. Polym. J., 68, 190 (2015).CrossRefGoogle Scholar
  22. 22.
    X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Liu, and Y. Chen, Polym. Test., 32, 819 (2013).CrossRefGoogle Scholar
  23. 23.
    I. Shahabi-Ghahafarrokhi, F. Khodaiyan, M. Mousavi, and H. Yousefi, Fiber. Polym., 16, 529 (2015).CrossRefGoogle Scholar
  24. 24.
    W. T. Wulandari, A. Rochliadi, and I. M. Arcana, IOP Conf. Ser. Mater. Sci., 107, 012045 (2016).CrossRefGoogle Scholar
  25. 25.
    X. Luo and X. Wang, BioResources, 12, 5826 (2017).Google Scholar
  26. 26.
    M. R. K. K.Sofla, R. J. Brown, T. Tsuzuki, and T. J. Rainey, Adv. Nat. Sci.-Nanosci Nanotechnol., 7, 035004 (2016).CrossRefGoogle Scholar
  27. 27.
    S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydr. Res., 340, 417 (2005).CrossRefGoogle Scholar
  28. 28.
    A. de Cristo Soares Alves, R. M. Mainardes, and N. M. Khalil, Mater. Sci. Eng. C-Mater. Biol. Appl., 60, 126 (2016).CrossRefGoogle Scholar
  29. 29.
    S.-D. Yoon, Y.-M. Kim, B. I. Kim, and J.-Y. Je, J. Photochem. Photobiol. B-Biol., 176, 145 (2017).CrossRefGoogle Scholar
  30. 30.
    A. El Oudiani, Y. Chaabouni, S. Msahli, and F. Sakli, Carbohydr. Polym., 86, 1221 (2011).CrossRefGoogle Scholar
  31. 31.
    N. Wang, E. Ding, and R. Cheng, Polymer, 48, 3486 (2007).CrossRefGoogle Scholar
  32. 32.
    T. Fattahi Meyabadi, F. Dadashian, G. Mir Mohamad Sadeghi, and H. Ebrahimi Zanjani Asl, Powder Technol., 261, 232 (2014).Google Scholar
  33. 33.
    D. Singh, M. Singh Maniyari Rawat, A. Semalty, and M. Semalty, Lett. Drug Des. Discov., 8, 284 (2011).CrossRefGoogle Scholar
  34. 34.
    L. C. Yeng, M. U. Wahit, and N. Othman, J. Teknol., 75, 107 (2015).Google Scholar
  35. 35.
    J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, Cellulose, 15, 149 (2008).CrossRefGoogle Scholar
  36. 36.
    M. Przybyłek, M. Bakar, M. Mendrycka, U. Kosikowska, A. Malm, M. Worzakowska, T. Szymborski, and K. Kędra-Królik, Mater. Sci. Eng. C-Mater. Biol. Appl., 76, 269 (2017).CrossRefGoogle Scholar
  37. 37.
    W. J. Chen, J. Gu, and S. H. Xu, Express Polym. Lett., 8, 659 (2014).CrossRefGoogle Scholar
  38. 38.
    V. Baheti, R. Mishra, J. Militky, and B. K. Behera, Fiber. Polym., 15, 1500 (2014).CrossRefGoogle Scholar
  39. 39.
    C. Sareena, M. Sreejith, M. Ramesan, and E. Purushothaman, J. Reinf. Plast. Compos., 33, 412 (2014).CrossRefGoogle Scholar
  40. 40.
    D. A. Baeta, J. A. Zattera, M. G. Oliveira, and P. J. Oliveira, Braz. J. Chem. Eng., 26, 23 (2009).CrossRefGoogle Scholar
  41. 41.
    S. Rajesh Kumar, P. M. Asseref, J. Dhanasekaran, and S. K. Mohan, RSC Adv., 4, 12526 (2014).CrossRefGoogle Scholar
  42. 42.
    M. M. Hassan, R. O. Aly, A. El-Ghandour, and H. A. Abdelnaby, J. Elastomer Plast., 45, 77 (2013).CrossRefGoogle Scholar
  43. 43.
    L. M. Wu, D. S. Tong, L. Z. Zhao, W. H. Yu, C. H. Zhou, and H. Wang, Appl. Clay Sci., 95, 74 (2014).CrossRefGoogle Scholar
  44. 44.
    M. H. Izmar, M. M. Afiq, and A. R. Azura, Compos. Pt. BEng., 43, 2746 (2012).CrossRefGoogle Scholar
  45. 45.
    T. W. Cho and S. W. Kim, J. Appl. Polym. Sci., 121, 1622 (2011).CrossRefGoogle Scholar
  46. 46.
    M. Musioł, H. Janeczek, S. Jurczyk, I. Kwiecień, M. Sobota, A. Marcinkowski, and J. Rydz, Fiber. Polym., 16, 1362 (2015).CrossRefGoogle Scholar
  47. 47.
    Y. Zhou, M. Fan, L. Chen, and J. Zhuang, Compos. Pt. BEng., 76, 180 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Mohamad Nurul Azman Mohammad Taib
    • 1
  • Wageeh A. Yehye
    • 1
  • Nurhidayatullaili Muhd Julkapli
    • 1
    Email author
  1. 1.Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies (IPS)University of MalayaKuala LumpurMalaysia

Personalised recommendations