Fibers and Polymers

, Volume 20, Issue 1, pp 63–68 | Cite as

Nanostructure Changes in Nylon 5,6 Fibers under Tension owing to Hydrogen Bond Formation

  • Kukhyun Jo
  • Hyo Jung KimEmail author
  • Hyun Hwi LeeEmail author


We investigated the effect of tension on the stable α-phase formation of nylon 5,6 fibers with two different drawing speeds using two-dimensional transmission wide angle X-ray scattering (2D WAXS) measurement. In an ex-situ condition, i.e., after releasing the applied tension and temperature, the relative amount of the α-phase in the fibers was higher at a higher drawing speed (57 mm/min). On the contrary, the development of the α-phase seemed faster and stronger during in-situ elongation of the fiber at a lower drawing speed (38 mm/min). The γ-phase, rather than the α-phase, played a key role in this complex behavior. The mechanical properties of the nylon fibers elongated under slow drawing speed (38 mm/min) were better than those elongated under a higher drawing speed (57 mm/min). The mechanical properties were more consistent in the case of α-phase formation in an in-situ condition under applied tension on the nylon fibers. Detailed structural information was obtained by quantitative analysis of the 2D WAXS data using an in-situ fiber drawing device.


Nylon 56 α phase Transmission WAXS Drawing speed In-situ drawing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. White and M. Cakmak, Adv. Polym. Technol., 6, 295 (1986).CrossRefGoogle Scholar
  2. 2.
    N. S. Murthy, R. G. Bray, S. T. Correale, and R. A. F. F.Moore, Polymer, 36, 3863 (1995).CrossRefGoogle Scholar
  3. 3.
    F. Hamonic, V. Miri, A. Saiter, and E. Dargent, Eur. Polym. J., 58, 233 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Cai, S. Chawla, and M. Naraghi, Carbon, 109, 813 (2016).CrossRefGoogle Scholar
  5. 5.
    M. R. Vengatesan, S. Singh, V. V. Pillai, and V. Mittal, J. Appl. Polym. Sci., 133, 43725 (2016).CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, Q. Wang, J. Jiang, X. Zhan, and F. Chen, Langmuir, 31, 4752 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Zhang, H. Wang, D. Xu, W. Yang, P. Tang, and Y. Bin, J. Appl. Polym. Sci., 133, 43605 (2016).Google Scholar
  8. 8.
    K. Bruckmoser and K. Resch, J. Appl. Polym. Sci., 132, 42432 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Hill and E. Walker, J. Polym. Sci. Part A: Polym. Chem., 3, 609 (1948).Google Scholar
  10. 10.
    Y. A. Eltahir, H. A. Saeed, Y. Xia, H. Yong, and W. Yimin, J. Text. I., 107, 208 (2016).Google Scholar
  11. 11.
    H. M. Heuvel, R. Huisman, and K. C. J. B. B. Lind, J. Polym. Sci.: Polym. Phys. Ed., 14, 921 (1976).Google Scholar
  12. 12.
    C. Bunn and E. Garner, Proc. R. Soc. Lond. A, 189, 39 (1947).CrossRefGoogle Scholar
  13. 13.
    J. Puiggalí, L. Franco, C. Alemán, and J. Subirana, Macromolecules, 31, 8540 (1998).CrossRefGoogle Scholar
  14. 14.
    J. M. Schultz, B. S. Hsiao, and J. M. Samon, Polymer, 41, 8887 (2000).CrossRefGoogle Scholar
  15. 15.
    L. Morales-Gámez, D. Soto, L. Franco, and J. Puiggalí, Polymer, 51, 5788 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Murase, M. Kashima, K. Kudo, and M. Hirami, Macromol. Chem. Phys., 198, 561 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Organic Materials Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Pohang Accelerator LaboratoryPOSTECHPohangKorea

Personalised recommendations