Fibers and Polymers

, Volume 20, Issue 1, pp 100–112 | Cite as

Correlations between Fibre Diameter, Physical Parameters, and the Mechanical Properties of Randomly Oriented Biobased Polylactide Nanofibres

  • Mantsopa Koena Selatile
  • Suprakas Sinha RayEmail author
  • Vincent Ojijo
  • Rotimi Sadiku


In this study, the tensile properties of systematically optimised, biodegradable polylactide (PLA) electrospum fibres are investigated in order to illuminate the influences of the factors that affect their mechanical properties such as fibre diameter, alignment, inter-fibre bonding, mat porosity, and packing density. The effect of fibre diameter was studied by varying the PLA concentration. The effect of fibre-fibre interaction enhancement was also investigated. The extent of anisotropy on the mechanical properties of the mats was evaluated as a function of the collector drum speed in the rotational (0°), transverse (90°), and diagonal (45°) directions. The results demonstrate a strong correlation between the fibre diameter and the mechanical properties. Thinner fibres exhibit better mechanical properties, which are then further enhanced by fibre fusion and alignment. Other mat characteristics have minimal effects on the mechanical properties. The fibres produced at drum speeds of <250 rpm, exhibit isotropic character. Fibre alignment is observed beyond this speed, with strong enhancement of properties in the direction of drum rotation. In summary, randomly oriented fibres with isotropic responses to mechanical properties may be used in applications such as air filtration.


Electrospinning parameters Inter-fibre bonding Mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2019_8262_MOESM1_ESM.pdf (17 mb)
Correlations between Fibre Diameter, Physical Parameters, and the Mechanical Properties of Randomly Oriented Biobased Polylactide Nanofibres


  1. 1.
    J. Huang, Y. Cao, Z. Hung, S. A. Imbraguglio, Z. Wang, X. Peng, and Z. Guo, Macromol. Mater. Eng., 301, 1327 (2016).CrossRefGoogle Scholar
  2. 2.
    R. Wang, Y. Liu, B. Li, B. S. Hsiao, and B. Chu, J. Membr. Sci., 392, 167 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Inai, M. Kotaki, and S. Ramakrishna, J. Polym. Sci. Part B: Polym. Phys., 43, 3205 (2005).CrossRefGoogle Scholar
  4. 4.
    K. Uh, T. Kim, C. W. Lee, and J.-M. Kim, Macromol. Mater. Eng., 301, 1320 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Al-Jallad and Y. Atassi, J. Appl. Polym. Sci., 133, 43687 (2016).CrossRefGoogle Scholar
  6. 6.
    K. Liu, Z. Xiao, P. Ma, J. Chen, M. Li, Q. Liu, Y. Wang, and D. Wang, RSC Adv., 5, 87924 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Yi, P. Cheng, J. Chen, K. Liu, Q. Liu, M. Li, W. Zhong, W. Wang, Z. Lu, and D. Wang, Indus. Eng. Chem. Res. 57, 9269 (2018).CrossRefGoogle Scholar
  8. 8.
    X. Wei, Z. Xia, S. C. Wong, and A. Baji, Int. J. Exp. Comp. Biomech., 1, 45 (2009).CrossRefGoogle Scholar
  9. 9.
    C. Xiang and M. Frey, Materials, 9, 270 (2016).CrossRefGoogle Scholar
  10. 10.
    X. Zhu, W. Cui, X. Li, and Y. Jin, Biomacromolecules, 9, 1795 (2009).CrossRefGoogle Scholar
  11. 11.
    S. Homaeigohar, J. Koll, E. T. Lilleodden, and M. Elbahri, Sep. Purif. Technol., 98, 456 (2012).CrossRefGoogle Scholar
  12. 12.
    S. J. Lee, S. H. Oh, J. Liu, S. Soker, A. Atala, and J. J. Yoo, Biomaterials, 29, 1422 (2008).CrossRefGoogle Scholar
  13. 13.
    A. Abdal-Hay, K. H. Hussein, L. Casettari, K. A. Khalil, and A. S. Hamdy, Mater. Sci. Eng., 60, 143 (2016).CrossRefGoogle Scholar
  14. 14.
    S. C. Wong, A. Baji, and S. Leng, Polymer, 49, 4713 (2008).CrossRefGoogle Scholar
  15. 15.
    L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. Mccutcheon, J. Membr. Sci., 460, 241 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, Scripta Mater., 59, 475 (2008).CrossRefGoogle Scholar
  17. 17.
    C. L. Pai, M. C. Boyce, and G. C. Rutledge, Polymer, 52, 6126 (2011).CrossRefGoogle Scholar
  18. 18.
    A. Baji, Y. W. Mai, and S. C. Wong, Mater. Sci. Eng. A, 528, 6565 (2011).CrossRefGoogle Scholar
  19. 19.
    T. Stylianopoulos, C. A. Bashur, A. S. Goldstein, S. A. Guelcher, and V. H. Barocas, J. Mech. Behav. Biomed. Mater., 1, 326 (2008).CrossRefGoogle Scholar
  20. 20.
    C. L. Pai, M. C. Boyce, and G. C. Rutledge, Polymer, 52, 2295 (2011).CrossRefGoogle Scholar
  21. 21.
    A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. You, S. Wonlee, J. S. Lee, and W. H. Park, Mater. Lett., 60, 1331 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Kancheva, A. Toncheva, N. Manolova, and I. Rashkov, Express Polym. Lett., 9, 49 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Huang, S. S. Manickam, and J. R. Mcutcheon, J. Membr. Sci., 436, 213 (2013).CrossRefGoogle Scholar
  25. 25.
    S. S. Sreedhara and N. R. Tata, J. Eng. Fibre Fabri., 8, 132 (2013).Google Scholar
  26. 26.
    T. Yang, D. Wu, L. Lu, W. Zhou, and M. Zhang, Polym. Compos., 32, 1280 (2011).CrossRefGoogle Scholar
  27. 27.
    R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, Polymer, 55, 4728 (2014).CrossRefGoogle Scholar
  28. 28.
    S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer, 46, 3372 (2005).CrossRefGoogle Scholar
  29. 29.
    H. J. Choi, S. B. Kim, S. H. Kim, and M. H. Lee, J. Air Waste Manage. Assoc., 64, 322 (2014).CrossRefGoogle Scholar
  30. 30.
    C. J. Angammana and S. H. Jayaram, Part. Sci. Technol., 34, 72 (2016).CrossRefGoogle Scholar
  31. 31.
    C. Ribeiro, V. Sencadas, C. M. Costa, J. L. Gomez Ribelles, and S. Lanceros-Mendez, Sci. Technol. Adv. Mater., 12, 1 (2011).CrossRefGoogle Scholar
  32. 32.
    H. Tsuji, M. Nakano, M. Hashimoto, K. Takashima, S. Katsura, and A. Mizuno, Biomacromolecules, 7, 3316 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Zargham, S. Bazgir, A. Tavakolia, A. S. Rashidi, and R. Damerchely, J. Eng. Fibre Fabri., 7, 42 (2012).Google Scholar
  34. 34.
    O. Ero-Phillips, M. Jenkins, and A. Stamboulis, Polymers, 4, 1331 (2012).CrossRefGoogle Scholar
  35. 35.
    M. Richard-Lacroix and C. Pellerin, Macromolecules, 46, 9473 (2013).CrossRefGoogle Scholar
  36. 36.
    N. Amiraliyan, M. Nouri, and M. Haghihat Kish, Polym. Sci. Ser. A, 52, 407 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Mantsopa Koena Selatile
    • 1
    • 3
  • Suprakas Sinha Ray
    • 1
    • 2
    Email author
  • Vincent Ojijo
    • 1
  • Rotimi Sadiku
    • 3
  1. 1.DST-CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa
  3. 3.Division of Polymer Technology, Department of Chemical, Metallurgical and Materials EngineeringTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations