Advertisement

Fibers and Polymers

, Volume 20, Issue 8, pp 1608–1615 | Cite as

Stretching-induced Alignment of Carbon Nanotubes and Associated Mechanical and Electrical Properties of Elastomeric Polyester-based Composite Fibers

  • Min Ho JeeEmail author
  • Doo Hyun BaikEmail author
Article
  • 23 Downloads

Abstract

Composite fibers composed of elastomeric segmented copolyetherester (CPEE) and poly(ethylene glycol)-functionalized multi-walled carbon nanotubes (MWCNT-PEG) (80/20 by wt%) were manufactured using wet-spinning and stretched up to 200 % at room temperature. It was confirmed that the introduction of PEG chains on the surfaces of the MWCNTs provides a specific interfacial interaction between the MWCNTs and CPEE matrix, which results in an enhanced alignment of the MWCNTs in the CPEE/MWCNT-PEG composite fibers through a simple stretching at room temperature without any high-temperature conditions required for the general drawing or stretching processes. As a result, the initial modulus and tensile strength of the composite fibers stretched up to 200 % were increased by 320 % and 350 %, respectively, as compared to the as-spun composite fibers. In addition, the electrical conductivity of the composite fibers was also noticeably increased with an increase in the stretching ratio. Interestingly, the correlation coefficient among the MWCNT alignment, modulus, and conductivity is 0.97, which means that the alignment of the MWCNTs is closely related to the change in the physical properties of the composite fibers.

Keywords

Composite fiber MWCNT-PEG Stretching-induced MWCNT alignment Physical properties Structure-properties correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).CrossRefPubMedGoogle Scholar
  2. 2.
    M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).CrossRefGoogle Scholar
  3. 3.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings, and C. Dekker, Nature, 386, 474 (1997).CrossRefGoogle Scholar
  4. 4.
    M. J. Green, N. Behabtu, M. Pasquali, and W. W. Adams, Polymer, 50, 4979 (2009).CrossRefGoogle Scholar
  5. 5.
    D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett., 74, 3803 (1999).CrossRefGoogle Scholar
  6. 6.
    M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Y. H. Li, J. Wei, X. Zhang, C. Xu, D. Wu, L. Lu, and B. Wei, Chem. Phys. Lett., 365, 95 (2002).CrossRefGoogle Scholar
  8. 8.
    M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, Science, 309, 1215 (2005).CrossRefPubMedGoogle Scholar
  9. 9.
    L. Vaisman, B. Larin, I. Davidi, E. Wachtel, G. Maron, and H. D. Wagner, Compos. Part A, 38, 1354 (2007).CrossRefGoogle Scholar
  10. 10.
    A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, Nature, 423, 703 (2003).CrossRefPubMedGoogle Scholar
  11. 11.
    S. H. Choi, Y. J. Jeong, G. W. Lee, and D. H. Cho, Fiber. Polym., 10, 513 (2009).CrossRefGoogle Scholar
  12. 12.
    X. Xu, A. J. Uddin, K. Aoki, Y. Gotoh, T. Saito, and M. Yumura, Carbon, 48, 1977 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Mai, D. Pan, X. Gao, M. Yao, H. Deng, K. Wang, F. Chen, and Q. Fu, Polym. Int., 60, 1646 (2011).CrossRefGoogle Scholar
  14. 14.
    L. Deng, R. J. Young, S. van der Zwaag, and S. Picken, Polymer, 51, 2033 (2010).CrossRefGoogle Scholar
  15. 15.
    N. Behabtu, M. J. Green, and M. Pasquali, Nanotoday, 3, 24 (2008).CrossRefGoogle Scholar
  16. 16.
    V. A. Davis, A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V. Prieto, R. D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W. W. Adams, R. H. Hauge, J. E. Fischer, Y. Cohen, Y. Talmon, R. E. Smalley, and M. Pasquali, Nature Nanotech., 4, 830 (2009).CrossRefGoogle Scholar
  17. 17.
    L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer, and R. E. Smalley, Science, 305, 1447 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    M. E. Kozlov, R. C. Capps, W. M. Sampson, V. H. Ebron, J. P. Ferraris, and R. H. Baughman, Adv. Mater., 17, 614 (2005).CrossRefGoogle Scholar
  19. 19.
    J. M. Razal, J. N. Coleman, E. Munoz, B. Lund, Y. Gogotsi, H. Ye, S. Collins, A. B. Dalton, and R. H. Baughman, Adv. Func. Mater., 17, 2918 (2007).CrossRefGoogle Scholar
  20. 20.
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailer, C. Journet, P. Bernier, and P. Poulin, Science, 290, 1331 (2000).CrossRefPubMedGoogle Scholar
  21. 21.
    B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, Appl. Phys. Lett., 81, 1210 (2002).CrossRefGoogle Scholar
  22. 22.
    B. G. Min, T. V. Sreekumar, T. Uchida, and S. Kumar, Carbon, 43, 599 (2005).CrossRefGoogle Scholar
  23. 23.
    P. Miaudet, S. Badaire, M. Maugey, A. Derré, V. Pichot, P. Launois, P. Poulin, and C. Zakri, Nano Letters, 5, 2212 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    M. H. Jee, S. H. Park, J. U. Choi, Y. G. Jeong, and D. H. Baik, Fiber. Polym., 13, 443 (2012).CrossRefGoogle Scholar
  25. 25.
    M. H. Jee, J. U. Choi, S. H. Park, Y. G. Jeong, and D. H. Baik, Macromol. Res., 20, 650 (2012).CrossRefGoogle Scholar
  26. 26.
    M. H. Jee and D. H. Baik, Fiber. Polym., 19, 561 (2018).CrossRefGoogle Scholar
  27. 27.
    A. V. Neimark, S. Ruetsch, K. G. Kornev, P. I. Ravikovitch, P. Poulin, S. Badaire, and M. Maugey, Nano Letters, 3, 419 (2003).CrossRefGoogle Scholar
  28. 28.
    E. Muñoz, D. S. Suh, S. Collins, M. Selvidge, A. B. Dalton, B. G. Kim, J. M. Razal, G. Ussery, A. G. Rinzler, M. T. Martinez, and R. H. Baughman, Adv. Mater., 17, 1064 (2005).CrossRefGoogle Scholar
  29. 29.
    S. Zhang, L. Zhu, M. L. Minus, H. G. Chae, S. Jagannathan, C. P. Wong, J. Kowalik, L. B. Roberson, and S. Kumar, J. Mater. Sci., 43, 4356 (2008).CrossRefGoogle Scholar
  30. 30.
    Y. Liu and S. Kumar, ACS Appl. Mater. Interfaces, 6, 6069 (2014).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Advanced Organic Materials and Textile System EngineeringChungnam National UniversityDaejeonKorea
  2. 2.Consumer Product Safety DivisionKorean Agency for Technology and Standards, Ministry of Trade, Industry and EnergyEumseongKorea

Personalised recommendations