Fibers and Polymers

, Volume 20, Issue 11, pp 2390–2399 | Cite as

Failure Analysis of CFRP Multidirectional Laminates Using the Probabilistic Weibull Distribution Model under Static Loading

  • Alok BeheraEmail author
  • Manjusha M. Thawre
  • Atul Ballal


The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing to multiple orientations with the loading direction increases the intricacy of failure analysis. Hence, the macroscopic and microscopic fracture behaviour of MD CFRP laminates under static loading needs to be explored further. In this study, four different MD CFRP laminates were fabricated using IMA/M21 prepregs by the autoclaving technique. Effect of fiber orientation on static strength i.e. tensile and compressive strength was studied. The strength decreased with the increase in orientation angle. Scanning electron micrographs revealed that irrespective of the lay-up sequence individual layers failed parallel to the fiber direction. Fiber breakage and delamination were the major failure modes in tensile specimens while kinking, matrix failure, in-plane shear, stepped fracture, and fiber-matrix debonding were dominated in compression specimens. The theoretical and experimental data was in good agreement with the Weibull distribution model.


CFRP Multidirectional Tensile strength Compressive strength SEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors express their sincere thanks to Director, VNIT, and Head of Department of Metallurgical & Materials Engineering, VNIT, Nagpur for providing testing facilities, support, and encouragement for this work. The authors gratefully acknowledge Dr. C.M. Manjunatha, Senior Principal Scientist, Structural Technologies Division, CSIR-NAL, Bangalore for his valuable guidance and advice to carry this research.


  1. 1.
    M. Kawai and T. Taniguchi, Compos. Part A Appl. Sci. Manuf., 37, 243 (2006).CrossRefGoogle Scholar
  2. 2.
    Y. Li, N. Li, J. Zhou, and Q. Cheng, Compos. Struct., 212, 83 (2019).CrossRefGoogle Scholar
  3. 3.
    M. Romanowicz, Compos. Part B Eng., 90, 45 (2016).CrossRefGoogle Scholar
  4. 4.
    M. M. Shokrieh, M. Salamat-talab, and M. Heidari-Rarani, Theor. Appl. Fract. Mech., 90, 22 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Kawai and N. Itoh, J. Compos. Mater., 48, 571 (2014).CrossRefGoogle Scholar
  6. 6.
    O. I. Okoli and G. F. Smith, J. Mater. Sci., 33, 5415 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Daniel and O. Ishai, “Engineering Mechanics of Composite Materials”, 2nd ed., pp.316–329, Oxford University Press, New York, 2006.Google Scholar
  8. 8.
    Y. Kumagai, S. Onodera, Y. Nagumo, T. Okabe, and K. Yoshioka, Compos. Part A Appl. Sci. Manuf., 98, 136 (2017).CrossRefGoogle Scholar
  9. 9.
    D. Cai, J. Tang, G. Zhou, X. Wang, C. Li, and V. V. Silberschmidt, Polym. Test., 60, 307 (2017).CrossRefGoogle Scholar
  10. 10.
    D. Thomson, H. Cui, B. Erice, and N. Petrinic, Compos. Part A Appl. Sci. Manuf., 121, 213 (2019).CrossRefGoogle Scholar
  11. 11.
    J. Hu, C. Gao, S. He, W. Chen, Y. Li, B. Zhao, J. Chen, and D. Yang, Compos. Struct., 171, 92 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Ma, Y. Zhang, T. Sugahara, S. Jin, Y. Yang, and H. Hamada, Compos. Part A Appl. Sci. Manuf., 90, 711 (2016).CrossRefGoogle Scholar
  13. 13.
    M. S. Hussain, A. R. Anilchandra, N. Jagannathan, and C. M. Manjunatha, Mater. Perform., 5, 132 (2016).Google Scholar
  14. 14.
    T. P. Philippidis and A. P. Vassilopoulos, Int. J. Fatigue., 21, 253 (1999).CrossRefGoogle Scholar
  15. 15.
    A. L. Kozlovskiy, D. I. Shlimas, I. E. Kenzhina, and M. V. Zdorovets, Compos. Struct., 79, 381 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Kawai and T. Teranuma, Compos. Part A Appl. Sci. Manuf., 43, 1252 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Kawai and S. Saito, Compos. Part A Appl. Sci. Manuf., 40, 1632 (2009).CrossRefGoogle Scholar
  18. 18.
    Z. Qi, Y. Liu, and W. Chen, Compos. Struct., 210, 339 (2019).CrossRefGoogle Scholar
  19. 19.
    L. Yao, H. Cui, Y. Sun, L. Guo, X. Chen, M. Zhao, and R. C. Alderliesten, Compos. Part A Appl. Sci. Manuf., 115, 175 (2018).CrossRefGoogle Scholar
  20. 20.
    P. Rosch, T. Bruder, and P. Wagner, Mat. wiss. u. Werksttech., 49, 287 (2018).CrossRefGoogle Scholar
  21. 21.
    K. W. Gan, T. Laux, S. T. Taher, J. M. Dulieu-Barton, and O. T. Thomsen, Compos. Struct., 184, 662 (2018).CrossRefGoogle Scholar
  22. 22.
    P. Maimi, P. P. Camanho, J. A. Mayugo, and A. Turon, Mech. Mater., 43, 169 (2011).CrossRefGoogle Scholar
  23. 23.
    Y. Gong, B. Zhang, S. Mukhopadhyay, and S. R. Hallett, Compos. Struct., 201, 683 (2018).CrossRefGoogle Scholar
  24. 24.
    B. X. Bie, J. Y. Huang, D. Fan, T. Sun, K. Fezzaa, X. H. Xiao, M. L. Qi, and S. N. Luo, Carbon, 121, 127 (2017).CrossRefGoogle Scholar
  25. 25.
    J. D. Fuller and M. R. Wisnom, Compos. Part A Appl. Sci. Manuf., 69, 64 (2015).CrossRefGoogle Scholar
  26. 26.
    C. Blondeau, G. Pappas, and J. Botsis, Compos. Struct., 216, 464 (2019).CrossRefGoogle Scholar
  27. 27.
    X. Deng, J. Hu, W. X. Wang, and T. Matsubara, Compos. Struct., 208, 507 (2019).CrossRefGoogle Scholar
  28. 28.
    J. Montesano, B. McCleave, and C. V. Singh, Compos. Part B Eng., 133, 53 (2018).CrossRefGoogle Scholar
  29. 29.
    W. Weibull, J. Appl. Mech., 18, 293 (1951).Google Scholar
  30. 30.
    E. Barbero, J. Fernandez-Saez, and C. Navarro, Compos. Part B Eng., 31, 375 (2000).CrossRefGoogle Scholar
  31. 31.
    K. Naresh, K. Shankar, R. Velmurugan, and N. K. Gupta, Thin Walled Struct., 126, 150 (2018).CrossRefGoogle Scholar
  32. 32.
    K. Naresh, K. Shankar, and R. Velmurugan, Compos. Part B Eng., 133, 129 (2018).CrossRefGoogle Scholar
  33. 33.
    Z. Wang and Y. Xia, Compos. Sci. Technol., 57, 1599 (1998).CrossRefGoogle Scholar
  34. 34.
    ASTM D3039, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International, West Conshohocken, PA,, 2017.Google Scholar
  35. 35.
    ASTM D3410, “Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading”, ASTM International, West Conshohocken, PA,, 2016.Google Scholar
  36. 36.
    P. A. Carraro and M. Quaresimin, Int. J. Solids Struct., 58, 34 (2015).CrossRefGoogle Scholar
  37. 37.
    M. J. Emerson, Y. Wang, P. J. Withers, K. Conrasdsen, A. B. Dahl, and V. A. Dahl, Comp. Sci. Technol., 168, 47 (2018).CrossRefGoogle Scholar
  38. 38.
    Z. Mahboob, I. E. Sawi, R. Zdero, Z. Fawaz, and H. Bougherara, Compos. Part A Appl. Sci. Manuf., 92, 118 (2016).CrossRefGoogle Scholar
  39. 39.
    M. Kawai, S. Yajima, A. Hachinohe, and Y. Kawase, Compos. Sci. Technol., 61, 1285 (2001).CrossRefGoogle Scholar
  40. 40.
    M. Bishara, M. Vogler, and R. Rolfes, Compos. Struct., 169, 116 (2017).CrossRefGoogle Scholar
  41. 41.
    J. Lee and C. Soutis, Compos. Sci. Technol., 67, 2015 (2007).CrossRefGoogle Scholar
  42. 42.
    M. H. Dirikolu, A. Aktas, and B. Birgoren, Turkish J. Eng. Environ. Sci., 26, 45 (2002).Google Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringVisvesvaraya National Institute of Technology (VNIT)NagpurIndia

Personalised recommendations