Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2127–2139 | Cite as

Nanocomposite Films Prepared from Differently Modified ZSM-5 Zeolite and Cellulose Nanofibrils for Cationic and Anionic Dyes Removal

  • Madhuri Lakhane
  • Megha Mahabole
  • Kashinath Bogle
  • Rajendra Khairnar
  • Vanja KokolEmail author
Article
  • 6 Downloads

Abstract

Ecologically-friendly and water-stable composite films were prepared by solvent casting process using variable concentrations (20 and 80 wt %) of de-aluminated (D-ZSM) and Cu (Cu-ZSM) or Fe (Fe-ZSM) ion-exchanged ZSM-5 (ZSM) zeolite as adsorbents and 0.6 wt% of cellulose nanofibrils (CNFs) as a matrix, to be used in removal of both cationic and anionic dyes. The films were characterized by spectroscopic (FTIR and XRD), microscopic (SEM), potentiometric titration, and CO2-adsorption (BET) analysis, and tested for cationic and anionic dyes removal capacity and kinetic via the batch adsorption process in aqueous buffer solutions. The influence of contact time, initial dye concentration, and pH is investigated and evaluated using various isotherm and kinetic models. The Langmuir isotherm is recognized as better fitting model for relevant study conditions, and the process follows pseudo-second order kinetic, yielding a monolayer adsorption capacity of about 34 mg/g and 16 mg/g for cationic and anionic dyes using D-ZSM/CNF and Fe-ZSM/CNF based films, respectively. Maximum dye removal is observed for a higher (80 wt %) amount of ZSM containing films and pH ≥ 7 vs. pH ≤ 7, influencing on electrostatic, physical, and hydrophobic adsorption mechanism. A higher adsorption efficiency of D-ZSM/CNF film with surface area of 194 m2/g is also related to unevenly distributed and globule-like structures of 40 nm sized D-ZSM, compared to more densely-packed and 72 nm sized platelet/flake-like structures of Cu-ZSM and Fe-ZSM covering the CNFs surface (7.5 m2/g). The films show potential in removal of differently charged contaminants, thus acting within a broader pH range, by being prepared with a combination of suitably modified ZSMs.

Keywords

ZSM-5 zeolite Modification Cellulose nanofibrils Film casting Dyes’ removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors wish to acknowledge the Euphrates Program “Erasmus-Mundus Lot-13 Project 2013-2540/001-001” funded by the European Union.

References

  1. 1.
    R. Kant, Natural Sci., 4, 22 (2012).CrossRefGoogle Scholar
  2. 2.
    R. O. A. de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragao Umbuzeiro, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, 53 (2007).CrossRefGoogle Scholar
  3. 3.
    R. Maas and S. Chaudhari, Process Biochem., 40, 699 (2005).CrossRefGoogle Scholar
  4. 4.
    S. K. Sen, S. Raut, P. Bandyopadhyay, and S. Raut, Fungal Biol. Rev., 30, 112 (2016).CrossRefGoogle Scholar
  5. 5.
    T. H. Kim, C. Park, J. Yang, and S. Kim, J. Hazard. Mater., 112, 95 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    B. X. Thanh, V. T. K. Quyen, and N. P. Dan, J. Water Sustain., 1, 289 (2011).Google Scholar
  7. 7.
    S. S. Moghaddam, M. R. A. Moghaddam, and M. Arami, J. Hazard. Mater., 175, 651 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Kuppusamy, K. Venkateswarlu, P. Thavamani, Y. B. Lee, R. Naidu, and M. Megharaj, Ecol. Eng., 101, 3 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Raghu and C. A. Basha, J. Hazard. Mater., 149, 324 (2007).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Karcher, A. Kornm, and M. Jekel, Water Res., 36, 4717 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Yang, Z. Wang, and J. Zhang, J. Membr. Sci., 532, 76 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Mansourpanah and M. Samimi, Ind. Eng. Chem. Res., 53, 93 (2017).CrossRefGoogle Scholar
  13. 13.
    H. J. Kumari, P. Krishnamoorthy, T. K. Arumugam, S. Radhakrishnan, and D. Vasudevan, Int. J. Biol. Macromol., 96, 324 (2017).CrossRefGoogle Scholar
  14. 14.
    K. S. Bharati and S. T. Ramesh, Appl. Water. Sci., 3, 773 (2013).CrossRefGoogle Scholar
  15. 15.
    F. Gally and M. Machado, Korean J. Chem. Eng., 31, 1470 (2014).CrossRefGoogle Scholar
  16. 16.
    C. Li, Y. Dong, J. Yang, Y. Li, and C. Huang, J. Mol. Liq., 196, 348 (2014).CrossRefGoogle Scholar
  17. 17.
    N. M. Mahmoodi, Z. H. Farahani, F. Bagherpour, M. R. Khoshrou, H. Chamani, and F. Forouzeshfar, Desalin. Water Treat., 57, 17220 (2015).CrossRefGoogle Scholar
  18. 18.
    K. Meral and O. Metin, Turkish J. Chem., 38, 775 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Abdi, M. Vossoughi, and N. Mohammad, Chem. Eng. J., 326, 1145 (2017).CrossRefGoogle Scholar
  20. 20.
    G. Vasugi and E. K. Girija, Cellul. Chem. Technol., 49, 87 (2015).Google Scholar
  21. 21.
    H. Hou, R. Zhou, P. Wu, and L. Wu, Chem. Eng. J., 211–212, 336 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Ma, Y. Jia, Y. Jing, and J. Sun, Dyes Pigm, 93, 1441 (2012).CrossRefGoogle Scholar
  23. 23.
    M. A. Kamaruddin, M. S. Yusoff, H. A. Aziz, and R. Alrozi, J. Mater. Chem. Eng., 2, 1 (2014).Google Scholar
  24. 24.
    M. Wang and L. Wang, Water Sci. Eng., 6, 272 (2013).Google Scholar
  25. 25.
    A. Tabak, N. Baltas, B. Afsin, M. Emirik, B. Caglarc, and E. Eren, J. Chem. Biotechnol, 85, 1199 (2010).CrossRefGoogle Scholar
  26. 26.
    N. V. Chagas, J. S. Meira, F. J. Anaissi, F. L. Melquiades, S. P. Quináia, M. L. Felsner, and K. C. Justi, Revista Virtual de Quimica, 6, 1607 (2014).Google Scholar
  27. 27.
    T. C. R. Bertolini, J. C. Izidoro, C. P. Magdalena, and D. A. Fungaro, Electron. J. Chem., 5, 179 (2013).Google Scholar
  28. 28.
    D. C. Santos, M. A. Adebayo, S. F. P. Pereira, L. T. Prola, R. Cataluña, E. C. Lima, C. Saucier, R. G. Caline, and F. M. Machado, Korean J. Chem. Eng., 31, 1470 (2014).CrossRefGoogle Scholar
  29. 29.
    M. P. Mahabole, M. A. Lakhane, A. L. Choudhari, and R. S. Khairnar, J. Porous Mater, 20, 607 (2013).CrossRefGoogle Scholar
  30. 30.
    Z. Xue, J. Ma, J. Zheng, T. Zhang, Y. Kang, and R. Li, Acta Mater., 60, 5712 (2012).CrossRefGoogle Scholar
  31. 31.
    P. Payra and P. K. Dutta, “Handbook of Zeolite Science and Technology”, pp.1–19, Marcel Dekker, Inc. Publishing, New York, 2003.Google Scholar
  32. 32.
    A. Gaffer, A. A. Kahlawy, and D. Aman, Egypt. J. Petrol., 26, 995 (2017).CrossRefGoogle Scholar
  33. 33.
    M. M. Motsa, T. A. M. Msagati, J. M. Thwala, and B. B. Mamba, Desalin. Water Treat, 53, 2604 (2015).CrossRefGoogle Scholar
  34. 34.
    M. Soheilmoghaddam, M. U. Wahit, W. T. Whye, N. I. Akos, R. H. Pour, and A. A. Yussuf, Carbohydr. Polym., 106, 326 (2014).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Shakarova, A. Ojuva, L. Bergstrom, and F. Akhtar, Materials, 7, 5507 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Y. Li, H. Xiao, M. Chen, Z. Song, and Y. Zhao, J. Mater. Sci, 49, 6696 (2014).CrossRefGoogle Scholar
  37. 37.
    S. Gopi, P. Balakrishna, C. Divya, S. Valic, E. Govorcin Bajsic, A. Pius, and S. Thomas, New J. Chem., 41, 12746 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Gopi, A. Pius, and S. Thomas, J. Water Process Eng., 14, 1 (2016).CrossRefGoogle Scholar
  39. 39.
    S. Gopi, P. Balakrishna, A. Pius, and S. Thomas, Carbohydr. Polym., 165, 115 (2017).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Pei, N. Butchosa, L. A. Berglund, and Q. Zhou, Soft Matter, 9, 2047 (2013).CrossRefGoogle Scholar
  41. 41.
    L. Q. Jin, W. G. Li, Q. H. Xu, and Q. C. Sun, Cellulose, 22, 2443 (2015).CrossRefGoogle Scholar
  42. 42.
    H. Sehaqui, U. P. de Larraya, P. Tingauta, and T. Zimmermann, Soft Matter, 11, 5294 (2015).PubMedCrossRefGoogle Scholar
  43. 43.
    P. Liu, P. F. Borrell, M. Bozic, V. Kokol, K. Oksman, and A. P. Mathew, J. Hazard. Mater, 294, 177 (2015).PubMedCrossRefGoogle Scholar
  44. 44.
    S. Hokkanen, E. Repo, T. Suopajarvi, H. Liimatainen, J. Niinimaa, and M. Sillanpää, Cellulose, 21, 1471 (2014).CrossRefGoogle Scholar
  45. 45.
    A. W. Carpenter, C. F. De Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    C. J. Zhou, Q. L. Wu, T. Z. Lei, and I. I. Negulescu, Chem. Eng. J., 251, 17 (2014).CrossRefGoogle Scholar
  47. 47.
    S. Gorgieva, R. Vogrinčič, and V. Kokol, J. Polym. Environ, 27, 318 (2018).CrossRefGoogle Scholar
  48. 48.
    D. A. Gopakumar, M. Suvendu, D. Pasquini, S. Thomas, and Y. Grohens in “New Polymer Nanocomposites for Environmental Remediation” (C. M. Hussain and A. K. Mishra Eds.), pp.469–486, Elsevier, 2018.Google Scholar
  49. 49.
    V. Kokol, M. Bozic, R. Vogrinicic, and A. P. Mathew, Carbohydr. Polym., 125, 301 (2015).PubMedCrossRefGoogle Scholar
  50. 50.
    A. D. Gopakumar, D. Pasquini, M. A. Henrique, L. C. de Morais, Y. Grohens, and S. Thomas, ACS Sustainable Chem. Eng., 5, 2026 (2017).CrossRefGoogle Scholar
  51. 51.
    W. Guo, J. Liang, H. Li, M. Ying, and J. Hu, Stud. Surf. Sci. Catal., 24, 279 (1985).CrossRefGoogle Scholar
  52. 52.
    D. D. Anggoro and N. A. S. Amin, J. Sustainable Energy Environ, 2, 57 (2011).Google Scholar
  53. 53.
    J. S. Bhaskar and G. Parthasarathy, J. Modern Phys, 1, 206 (2010).CrossRefGoogle Scholar
  54. 54.
    A. D. French and M. S. Cintron, Cellulose, 20, 583 (2013).CrossRefGoogle Scholar
  55. 55.
    A. D. French, Cellulose, 21, 885 (2014).CrossRefGoogle Scholar
  56. 56.
    M. Poletto, L. Heiter, J. Ornaghi, and A. J. Zattera, Materials, 7, 6105 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    W. Li, G. Li, C. Jin, X. Liu, and J. Wang, J. Mater. Chem. A, 3, 14786 (2015).CrossRefGoogle Scholar
  58. 58.
    E. Benaliouche, N. Hidous, M. Guerza, Y. Zouad, and Y. Boucheffa, Microporous Mesoporous Mater., 209, 184 (2015).CrossRefGoogle Scholar
  59. 59.
    H. K. Boparai, M. Joseph, and D. M. O’Carroll, J. Hazard. Mater, 186, 458 (2011).PubMedCrossRefGoogle Scholar
  60. 60.
    K. Y. Foo and B. H. Hameed, Chem. Eng. J., 156, 2 (2010).CrossRefGoogle Scholar
  61. 61.
    A. Dada, A. P. Olalekan, and A. M. Olatunya, J. Appl. Chem, 3, 38 (2012).Google Scholar
  62. 62.
    P. S. Kumar and K. Kirthika, J. Eng. Sci. Technol., 4, 351 (2009).Google Scholar
  63. 63.
    Y. Y. Keivsky, B. Carey, S. Naik, N. Mangan, D. Ben-Avraham, and I. Sokolov, J. Chem. Phys., 128, 151102 (2008).CrossRefGoogle Scholar
  64. 64.
    V. N. Puthiya, R. Gandhimathi, T. R. Sreekrishnaperumal, and S. A. S. Tangappan, J. Urban Environ. Eng., 6, 18 (2012).CrossRefGoogle Scholar
  65. 65.
    C. H. Chan, H. C. Chia, S. Zakaria, M. S. Sajab, and S. X. Chin, RSC Adv., 5, 18204 (2015).CrossRefGoogle Scholar
  66. 66.
    F. Jiang, M. D. Darren, and You-Lo, Carbohydr. Polym., 173, 286 (2017).PubMedCrossRefGoogle Scholar
  67. 67.
    Z. L. Cheng, X. Y. Li, and Z. Liu, Ecotox. Environ. Safe., 148, 585 (2018).CrossRefGoogle Scholar
  68. 68.
    E. Alver and A. U. Metin, Chem. Eng. J., 200–202, 59 (2012).CrossRefGoogle Scholar
  69. 69.
    G. V. Brio, S. L. Jahn, E. L. Foletto, and G. L. Dotto, J. Colloid Interf. Sci., 508, 313 (2017).CrossRefGoogle Scholar
  70. 70.
    S. K. H. Nejad-Darji, A. Samadi-Maybodi, and M. Ghobakhluo, J. Porous Mater., 20, 909 (2013).CrossRefGoogle Scholar
  71. 71.
    R. Sabarish and G. Unnikrishnan, J. Environ. Chem. Eng., 6, 3860 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Madhuri Lakhane
    • 1
    • 2
  • Megha Mahabole
    • 2
  • Kashinath Bogle
    • 2
  • Rajendra Khairnar
    • 2
  • Vanja Kokol
    • 1
    Email author
  1. 1.Institute of Engineering Materials and Design, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.School of Physical SciencesSwami Ramanand Teerth Marathwada UniversityNandedIndia

Personalised recommendations