Advertisement

Fibers and Polymers

, Volume 20, Issue 10, pp 2156–2165 | Cite as

Physical and Mechanical Properties of Wood-Plastic Composites Made with Microfibrillar Blends of LDPE, HDPE and PET

  • Seyyedeh Tahereh Mosavi-Mirkolaei
  • Saeed Kazemi NajafiEmail author
  • Mehdi Tajvidi
Article
  • 5 Downloads

Abstract

The effect of microfibrillar blends of recycled plastics on selected physical and mechanical characteristics of wood-plastic composites (WPCs) was investigated in this study. The production of wood plastic composites was carried out through a two-step extrusion technique. The plastic blends were drawn after extrusion to obtain microfibrillar morphology. The addition of polyethylene-co-glycidyl methacrylate (E-GMA) enhanced compatibility between the two phases and a homogenous structure was seen in the fracture surfaces by scanning electron microscopy (SEM). The crystallinity of base polymers increased with the addition of polyethylene terephthalate (PET) microfibrils, E-GMA and wood flour. The X-ray diffraction (XRD) patterns were also used to determine the crystallinity of all samples. According to the XRD results, the crystallinity degree of recycled plastics was higher than that of virgin plastics. E-GMA improved the water resistance of wood-plastic composites. The mechanical properties of samples were improved with the addition of PET microfibrils. The microfibrillar blending technique was found to be an effective approach for the production of high quality WPCs from recycled plastic blends.

Keywords

Wood-plastic composite PET microfibrils Recycled polyethylene blend Crystallinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Al-Salem, P. Lettieri, and J. Baeyens, J. Waste. Manage, 29, 2625 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Kazemi Najafi, J. Waste. Manage, 33, 1898 (2013).CrossRefGoogle Scholar
  3. 3.
    American Chemistry Council, Available online: https://plastics.americanchemistry.com/bottlesreport (Accessed October 9, 2012).
  4. 4.
    V. Goodship in “Introduction to Plastic Recycling”, SmithersRapra Technology Limited: Shropshire, United Kingdom, 2007.Google Scholar
  5. 5.
    R. Sarami, P. Lettieri, N. Golshan Ebrahimi, and M. Razzaghikashani, Ir. Polym. J., 17, 243 (2008).Google Scholar
  6. 6.
    B. K. Deka, T. K. Maji, and M. Mandal, Polym. Bull., 67, 1875 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Najafi and H. Khademi-Eslam, Biores, 6, 2411 (2011).Google Scholar
  8. 8.
    J. Chen, Y. Wang, C. Gu, J. Liu, Y. Liu, M. Li, and Y. Lu, Mater, 6, 2483 (2013).CrossRefGoogle Scholar
  9. 9.
    C. M. Hansen in “Hansen Solubility Parameters- A User’s Handbook”, CRC Press is an imprint of Taylor & Francis Group, an Informa Business: United States of America, 2000.Google Scholar
  10. 10.
    L. Kratofil, Z. Hrnjak-Murgic, J. Jelencic, B. Andricic, T. Kovacic, and V. Merzel, Int. Polym. Proces XXI, 3, 328 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Pracella, L. Rolla, D. Chinna, and A. Galeski, Macromol. Chem. Phys., 203, 1473 (2002).CrossRefGoogle Scholar
  12. 12.
    A. D. Todd, R. J. McEneany, V. A. Topolkaraev, C. W. Macosko, and M. A. Hillmyer, Macromolecules, 49, 8988 (2016).CrossRefGoogle Scholar
  13. 13.
    Y. Lei and Q. Wu, J. Appl. Polym. Sci., 113, 1710 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Lei and Q. Wu, J. Biores. Technol., 101, 3665 (2010).CrossRefGoogle Scholar
  15. 15.
    R. S. Chen, S. Ahmad, S. Gan, M. N. Salleh, M. H. AbGhani, and M. A. Tarawneh, Thermo. Acta, 640, 52 (2016).CrossRefGoogle Scholar
  16. 16.
    Q. Guo in “Polymer Morphology: Principles, Characterization, and Processing”, John Wiley & Sons, Inc: Hoboken, New Jersey, United States of America, 2016.CrossRefGoogle Scholar
  17. 17.
    L. Mandelkern in “Crystallization of Polymers”, Cambridge University Press, United States of America, New York, 2002.CrossRefGoogle Scholar
  18. 18.
    G. Reiter and J. U. Sommer in “Polymer Crystallization: Obervations”, Concepts and Interpretations Springer-Verlag. Berlin, Heidelberger, Germany, 2003.CrossRefGoogle Scholar
  19. 19.
    D. Kashchiev in “Nucleation”, Butterworth Heinemann: Oxford, United Kingdom, 2000.Google Scholar
  20. 20.
    C. Harrats, S. Thomas, and G. Groeninckx in “Micro- and Nanostructured Multiphase Polymer Blend Systems: Phase Morphology and Interfaces”, CRC Press: Boca Raton, United States of America, Florida, 2006.Google Scholar
  21. 21.
    C. Clemons in “Raw Materials for Wood-polymer Composites. In Wood-polymer Composites” (K. O. Niska and M. Sain Eds.), Woodhead Publishing: Sawston, Cambridge, United Kingdom, 2008.Google Scholar
  22. 22.
    A. A. Klyosov in “Wood-Plastic Composites”, John Wiley & Sons, Inc: Hoboken, United States of America, New Jersey, 2007.CrossRefGoogle Scholar
  23. 23.
    K. S. Rahman, M. N. Islam, M. M. Rahman, M. O. Hannan, R. Dungani, and H. A. Khalil, Spring. Pl. J., 2, 1 (2013).CrossRefGoogle Scholar
  24. 24.
    F. Pelisser, O. R. K. Montedoa, P. J. P. Gleizeb, and H. R. Romanb, J. Mater. Res., 15, 679 (2012).CrossRefGoogle Scholar
  25. 25.
    M. Evstatiev, S. Fakirov, B. Krasteva, K. Friedrich, J. A. Covas, and A. M. Cunha, J. Polym. Eng. Sci., 42, 826 (2002).CrossRefGoogle Scholar
  26. 26.
    J. M. Irwan, R. M. Asyraf, Othman N. H. B. Koh, M. M. K. Annas, and S. K. Faisal J. Adv. Mater. Res., 795, 347 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Lei, Q. Wu, and Q. Zhang, Compos. Part A, 40, 904 (2009).CrossRefGoogle Scholar
  28. 28.
    C. Arango, S. Rodriguez-llamazaresi, J. Castano, and A. Zuniga, J. Chil. Chem. Soc., 59, 2373 (2014).CrossRefGoogle Scholar
  29. 29.
    G. Grubbström, Licentiate Dissertation, Luleå University and Technology, Luleå, Sweden, 2009.Google Scholar
  30. 30.
    K. Friedrich, M. Evstatiev, S. Fakirov, O. Evstatiev, M. Ishii, and M. Harrass, Compos. Sci. Technol., 65, 107 (2005).CrossRefGoogle Scholar
  31. 31.
    Annual Book of ASTM Standards; ASTM D 1238-04; West Conshohocken, PA, 2004.Google Scholar
  32. 32.
    Annual Book of ASTM Standards; ASTM D570-98; West Conshohocken, PA, 1998.Google Scholar
  33. 33.
    Annual Book of ASTM Standards; ASTM D 790-03; West Conshohocken, PA, 2003.Google Scholar
  34. 34.
    Annual Book of ASTM Standards; ASTM D 638-03; West Conshohocken, PA, 2003.Google Scholar
  35. 35.
    Annual Book of ASTM Standards; ASTM D256-10; West Conshohocken, PA, 2010.Google Scholar
  36. 36.
    Annual Book of ASTM Standards; ASTM D3418-03; West Conshohocken, PA, 2003.Google Scholar
  37. 37.
    B. Wunderlich and M. Dole, J. Polym. Sci., 24, 201 (1957).CrossRefGoogle Scholar
  38. 38.
    J. C. Lepers, B. D. Favis, and R. J. Tabar, J. Polym. Sci. Part B-Polym. Phys., 35, 2271 (1997).CrossRefGoogle Scholar
  39. 39.
    A. S. Luyt and M. J. Hato, J. Appl. Polym. Sci., 96, 1748 (2005).CrossRefGoogle Scholar
  40. 40.
    A. T. P. Zahavich, B. Latto, E. Takacs, and J. Vlachopoulos, J. Adv. Polym. Technol., 16, 11 (1997).CrossRefGoogle Scholar
  41. 41.
    S. M. Tamboli, S. T. Mhaske, and D. D. Kale, Ind. J. Chem. Technol., 11, 853 (2004).Google Scholar
  42. 42.
    Y. L. Jiun, C. T. Tze, U. Moosa, and M. A. Tawawneh, Polym. Polym. Comp., 24, 735 (2016).Google Scholar
  43. 43.
    H. Jin, J. Gonzalez-Gutierrez, P. Oblak, B. Zupancic, and I. Emri, Polym. Degrad. Stabil., 97, 2262 (2012).CrossRefGoogle Scholar
  44. 44.
    B. J. Luijsterburg, Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, Netherlands, 2015.Google Scholar
  45. 45.
    C. A. Fonseca and I. R. Harrison, Thermo. Acta, 313, 37 (1998).CrossRefGoogle Scholar
  46. 46.
    G. Sarkhel, A. Banerjee, and P. Bhattacharya, Polym.-Plast. Technol. Eng., 45, 713 (2006).CrossRefGoogle Scholar
  47. 47.
    L. A. Utracki in “Crystallization, Morphological Structure, and Melting of Polymer Blends” (G. Groeninckx, M. Vanneste, and V. Everaert Eds.), Kluwer, Academic Publishers: Dordrecht, Netherlands, 2003.Google Scholar
  48. 48.
    P. P. Hsu, Ph. D. Dissertation, New Jersey Institute of Technology, United States of America, New York, 1991.Google Scholar
  49. 49.
    M. N. Siddiqui, M. A. Gonal, and H. H. Redhwi, J. Env. Sci. Heal. Part A, 43, 1303 (2008).CrossRefGoogle Scholar
  50. 50.
    A. Boudenne, L. Ibos, Y. Candau, and S. Thomas in “Handbook of Multiphase Polymer Systems” (Z. Z. Denchev and J. C. Viana Eds.), pp.666–701, John Wiley & Sons, Inc: Hoboken, New Jersey, United States of America, 2011.Google Scholar
  51. 51.
    M. Tajvidi, S. Kazemi Najafi, and N. Motieei, J. Appl. Polym. Sci., 99, 2199 (2005).CrossRefGoogle Scholar
  52. 52.
    A. Ashori and S. H. Sheshmani, J. Biores. Technol., 101, 4717 (2010).CrossRefGoogle Scholar
  53. 53.
    Y. Lei, Q. Wu, C. M. Clemons, F. Yao, and Y. Xu, J. Appl. Polym. Sci., 106, 3958 (2007).CrossRefGoogle Scholar
  54. 54.
    A. K. Van der Vegt in “Polymeren: van keten tot kunststof / A. K. van der Vegt, L. E. Govaert” Delft: VSSD, Libraries Australia, 2005.Google Scholar
  55. 55.
    J. L. Na, Appl. Mech. Mater, 312, 406 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  • Seyyedeh Tahereh Mosavi-Mirkolaei
    • 1
  • Saeed Kazemi Najafi
    • 1
    Email author
  • Mehdi Tajvidi
    • 2
  1. 1.Department of Wood and Paper Science and Technology, Faculty of Natural ResourcesTarbiat Modares UniversityNoorIran
  2. 2.Laboratory of Renewable Nanomaterials, School of Forest Resources and Advanced Structure and Composite CenterUniversity of MaineOronoUSA

Personalised recommendations