Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2564–2573 | Cite as

In-situ Synthesis of SiO2 Nanoparticles on Polyester Fabric as Benign Multi-purpose Catalysts

  • Bahare Nozari
  • Majid MontazerEmail author
  • Mahnaz Mahmoudi Rad
Article
  • 14 Downloads

Abstract

Here, silica nanoparticles (NPs) as safe multi-purpose catalysts were in situ synthesized on PET fabric to achieve a higher quality fabric. The PET fabric was treated in an aqueous solution of sodium silicate and ammonia at boil for 1 h to insitu synthesis silica NPs along with aminolysis of the fabric. Effect of silica NPs as the multi-purpose catalysts on the fabric were subjected to various analysis such as self-cleaning, hydrophilic, antibacterial and antifungal properties and also thermal resistance. The surface morphology, the crystalline structure and elemental analysis were studied by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and map and energy dispersive X-ray (EDX) analysis. The optimized treated fabric indicated 4 s for the water to spread and 65° for contact angle provided higher hydrophilic properties. Silica NPs on the fabric showed thermo-catalytic behavior protecting against yellowing at high temperature (200 °C for 3 h) proved the higher thermal resistance of the treated fabric. Also, the fabric specified good self-cleaning properties through discoloration of methylene blue solution. Further, the treated fabric proposed 100 % anti-bacterial and anti-fungal activities against Staphylococcus aureus, Escherichia coli and Candida albican along with good cell viability. Overall, this research indicates silica NPs as multi-purpose catalysts including photo, bio and thermo-catalyst on the PET fabric using low price materials.

Keywords

Silica NPs multi-purpose catalyst Bio-catalyst Photo-catalyst Thermo-catalyst PET fabric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Abbate, M. Dassisti, G. M. Cappelletti, G. M. Nicoletti, C. Russo, and G. Ioppolo, J. Clean Prod., 172, 735 (2018).CrossRefGoogle Scholar
  2. 2.
    Z. Li, Y. Dong, B. Li, P. Wang, Z. Chen, and L. Bian, Mater. Des., 140, 366 (2018).CrossRefGoogle Scholar
  3. 3.
    M. Montazer and S. Seifollahzadeh, Color. Technol., 127, 322 (2011).CrossRefGoogle Scholar
  4. 4.
    N. A. Ibrahim, B. M. Eid, H. M. Khalil, and A. A. Almetwally, Appl. Surf. Sci., 448, 95 (2018).CrossRefGoogle Scholar
  5. 5.
    M. S. Ibrahim, K. M. El Salmawi, and S. M. Ibrahim, Appl. Surf. Sci., 241, 309 (2005).CrossRefGoogle Scholar
  6. 6.
    J. Lv, Q. Zhou, T. Zhi, D. Gao, and C. Wang, J. Clean Prod., 118, 187 (2016).CrossRefGoogle Scholar
  7. 7.
    H. B. Zhao, L. Chen, J. C. Yang, X. G. Ge, and Y. Z. Wang, J. Mater. Chem., 22, 19849 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Škvarla, T. Luxbacher, M. Nagy, and M. Sisol, ACS Appl Mater Interfaces, 2, 2116 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Dimarogona, E. Nikolaivits, M. Kanelli, P. Christakopoulos, M. Sandgren, and E. Topakas, Biochim. Biophys. Acta, 1850, 2308 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Guo and M. Ulbricht, J. Memb. Sci., 349, 312 (2010).CrossRefGoogle Scholar
  11. 11.
    J. P. Xu, F. F. Li, J. Ji, and J. C. Shen, Thin Solid Films, 517, 3681 (2009).CrossRefGoogle Scholar
  12. 12.
    Z. Sanaee, S. Mohajerzadeh, K. Zand, F. S. Gard, and H. Pajouhi, Appl. Surf. Sci., 257, 2218 (2011).CrossRefGoogle Scholar
  13. 13.
    A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, Nat. Mater., 3, 337 (2004).CrossRefGoogle Scholar
  14. 14.
    A. Nazari, M. Montazer, A. Rashidi, M. Yazdanshenas, and M. Anary-Abbasinejad, Appl. Catal., A, 371, 10 (2009).CrossRefGoogle Scholar
  15. 15.
    A. T. Bell, Science, 299, 1688 (2003).CrossRefGoogle Scholar
  16. 16.
    Z. Mirjafary, H. Saeidian, A. Sadeghi, and F. M. Moghaddam, Catal Commun., 9, 299 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. S. Chi, H. P. Lin, and C. Y. Mou, Appl. Catal., A, 284, 199 (2005).CrossRefGoogle Scholar
  18. 18.
    M. M. Aboelhassan, A. F. Peixoto, and C. Freire, New J. Chem., 41, 3595 (2017).CrossRefGoogle Scholar
  19. 19.
    D. Wang, Y. Li, G. L. Puma, C. Wang, P. Wang, W. Zhang, and Q. Wang, Appl. Catal., B, 168, 25 (2015).Google Scholar
  20. 20.
    V. Allahyarzadeh, M. Montazer, N. H. Nejad, and N. Samadi, J. Appl. Polym. Sci., 129, 892 (2013).CrossRefGoogle Scholar
  21. 21.
    T. Harifi and M. Montazer, J. Mater. Chem. B, 2, 272 (2014).CrossRefGoogle Scholar
  22. 22.
    P. A. Zapata, R. Quijada, I. Lieberwirth, and H. Palza, Appl. Catal., A, 407, 181 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Montazer and M. Maali Amiri, J. Phys. Chem. B, 118, 1453 (2014).CrossRefGoogle Scholar
  24. 24.
    G. L. Davies, J. E. McCarthy, A. Rakovich, and Y. K. Gun'ko, J. Mater. Chem., 22, 7358 (2012).CrossRefGoogle Scholar
  25. 25.
    D. D. Lovingood, J. R. Owens, M. Seeber, K. G. Kornev, and I. Luzinov, ACS Appl. Mater. Interfaces, 4, 6875 (2012).CrossRefGoogle Scholar
  26. 26.
    C. Heng, M. Liu, P. Wang, K. Wang, X. Zheng, D. Fan, J. Hui, X. Zhang, and Y. Wei, Chem. Eng. J., 296, 268 (2016).CrossRefGoogle Scholar
  27. 27.
    X. Wang, L. Wang, Q. Su, and J. Zheng, Compos. Sci. Technol., 89, 52 (2013).CrossRefGoogle Scholar
  28. 28.
    M. Landowski, M. Budzik, and K. Imielinska, J. Compos. Mater., 48, 2805 (2014).CrossRefGoogle Scholar
  29. 29.
    S. Hashemikia and M. Montazer, Appl. Catal., A, 417, 200 (2012).CrossRefGoogle Scholar
  30. 30.
    G. Y. Bae, Y. G. Jeong, and B. G. Min, Fiber. Polym., 11, 976 (2010).CrossRefGoogle Scholar
  31. 31.
    T. Tsuchiya, Y. Kajitani, K. Ohta, Y. Yamada, and S. Sato, Catal Commun., 110, 42 (2018).CrossRefGoogle Scholar
  32. 32.
    G. Ö. R. A. N. Rikner and E. R. I. K. Grusell, Phys. Med. Biol., 32, 1109 (1987).CrossRefGoogle Scholar
  33. 33.
    T. Okutani, JMMM, 19, 2 (2017).Google Scholar
  34. 34.
    A. M. Anile and O. Muscato, Continuum. Mech. Thermodyn., 8, 131 (1996).CrossRefGoogle Scholar
  35. 35.
    L. Qu, Z. Luo, and C. Tang, Mater. Res. Bull., 48, 4601 (2013).CrossRefGoogle Scholar
  36. 36.
    X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, and G. Yu, Catal Commun., 11, 460 (2010).CrossRefGoogle Scholar
  37. 37.
    C. Yuan, X. Liu, M. Liang, C. Zhou, and H. Wang, Sens. Actuator A-Phys., 167, 291 (2011).CrossRefGoogle Scholar
  38. 38.
    Z. Shan, Y. Xia, Y. Yang, H. Ding, and F. Huang, Mater. Lett., 63, 75 (2009).CrossRefGoogle Scholar
  39. 39.
    P. Wu, X. Luo, S. Zhang, K. Li, and F. Qi, Appl. Catal., A, 497, 216 (2015).CrossRefGoogle Scholar
  40. 40.
    H. Palza, R. Vergara, and P. Zapata, Macromol. Mater. Eng., 295, 899 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Liu and G. Zhang, PCCP, 16, 8178 (2014).CrossRefGoogle Scholar
  42. 42.
    P. Wang, Curr. Opin. Biotechnol., 17, 574 (2006).CrossRefGoogle Scholar
  43. 43.
    H. Ren, Y. Zhou, M. He, R. Xu, B. Ding, X. Zhong, Y. Tong, L. Fan, Z. Cai, H. Shen, and Y. Huang, New J. Chem., 42, 3069 (2018).CrossRefGoogle Scholar
  44. 44.
    A. Bitar, N. M. Ahmad, H. Fessi, and A. Elaissari, Drug Discov. Today, 17, 1147 (2012).CrossRefGoogle Scholar
  45. 45.
    F. Tang, L. Li, and D. Chen, Adv. Mater., 24, 1504 (2012).CrossRefGoogle Scholar
  46. 46.
    J. Song, H. Kong, and J. Jang, Chem. Comm., 36, 5418 (2009).CrossRefGoogle Scholar
  47. 47.
    S. Ayazi-Yazdi, L. Karimi, M. Mirjalili, and M. Karimnejad, J. Text. Inst., 108, 856 (2017).CrossRefGoogle Scholar
  48. 48.
    N. A. Ibrahim, B. M. Eid, E. A. El-Aziz, T. M. A. Elmaaty, and S. M. Ramadan, Int. J. Biol. Macromol., 105, 769 (2017).CrossRefGoogle Scholar
  49. 49.
    D. C. Manatunga, R. M. De Silva, and K. N. De Silva, Appl. Surf. Sci., 360, 777 (2016).CrossRefGoogle Scholar
  50. 50.
    A. L. Mohamed, M. A. El-Sheikh, and A. I. Waly, Carbohydr. Polym., 102, 727 (2014).CrossRefGoogle Scholar
  51. 51.
    H. Zhang, R. Lamb, and J. Lewis, Sci. Technol. Adv. Mater., 6, 236 (2005).CrossRefGoogle Scholar
  52. 52.
    A. Berendjchi, R. Khajavi, and M. E. Yazdanshenas, Nanoscale Res. Lett., 6, 594 (2011).CrossRefGoogle Scholar
  53. 53.
    A. B. H. Musa, B. Malengier, L. Van Langenhove, and C. Stevens, Mater. Sci. Eng. C., 254, 142004 (2017).Google Scholar
  54. 54.
    Z. Zhao, J. Zhou, T. Fan, L. Li, Z. Liu, Y. Liu, and M. Lu, Mater. Chem. Phys., 203, 89 (2018).CrossRefGoogle Scholar
  55. 55.
    R. K. Goyal and A. S. Kapadia, Compos. B Eng., 50, 135 (2013).CrossRefGoogle Scholar
  56. 56.
    E. C. Lovell, J. Horlyck, J. Scott, and R. Amal, Appl. Catal., A, 546, 47 (2017).CrossRefGoogle Scholar
  57. 57.
    A. Rimola, M. Fabbiani, M. Sodupe, P. Ugliengo, and G. Martra, ACS Catal., 8, 4558 (2018).CrossRefGoogle Scholar
  58. 58.
    T. G. Pineda-Vásquez, A. E Casas-Botero, M. E. Ramírez-Carmona, M. M. Torres-Taborda, C. H. Soares, and D. Hotza, Ind. Eng. Chem. Res., 53, 6959 (2014).CrossRefGoogle Scholar
  59. 59.
    M. P. Gashti, H. Allahyary, P. Nasraei, and M. P. Gashti, Fiber. Polym., 14, 870 (2013).Google Scholar
  60. 60.
    Q. Zhu, Q. Gao, Y. Guo, C. Q. Yang, and L. Shen, Ind. Eng. Chem. Res., 50, 5881 (2011).CrossRefGoogle Scholar
  61. 61.
    P. Lerdkajornsuk and S. Charuchinda, JMMM, 20, 63 (2017).Google Scholar
  62. 62.
    Z. Dahaghin, H. Z. Mousavi, E. Mirparizi, and L. Boutorabi, New J. Chem., 41, 8637 (2017).CrossRefGoogle Scholar
  63. 63.
    M. Rezaei, M. Schaffie, and M. Ranjbar, Fuel, 113, 516 (2013).CrossRefGoogle Scholar
  64. 64.
    F. Carosio, A. Di Blasio, F. Cuttica, J. Alongi, A. Frache, and G. Malucelli, Ind. Eng. Chem. Res., 52, 9544 (2013).CrossRefGoogle Scholar
  65. 65.
    T. Gupta, S. Chaudhary, and R. K. Sharma, J. Clean Prod., 12, 702 (2016).CrossRefGoogle Scholar
  66. 66.
    M. Eita, H. Arwin, H. Granberg, and L. Wågberg, J. Colloid Interface Sci., 363, 566 (2011).CrossRefGoogle Scholar
  67. 67.
    L. X. Gong, L. L. Hu, J. Zang, Y. B. Pei, L. Zhao, and L. C. Tang, Fiber. Polym., 16, 2056 (2015).CrossRefGoogle Scholar
  68. 68.
    Y. Sakurai, J. Appl. Phys., 87, 755 (2000).CrossRefGoogle Scholar
  69. 69.
    A. Ogata, A. Kazusaka, and M. Enyo, J. Phys. Chem., 90, 5201 (1986).CrossRefGoogle Scholar
  70. 70.
    A. J. Miller, R. G. Leisure, V. A. Mashkov, and F. L. Galeener, Phys. Rev. B, 53, R8818 (1996).CrossRefGoogle Scholar
  71. 71.
    Y. Sakurai, J. Non-Cryst. Solids, 271, 218 (2000).CrossRefGoogle Scholar
  72. 72.
    Y. Badr, M. A. El-Wahed, and M. A. Mahmoud, J. Hazard Mater., 154, 245 (2008).CrossRefGoogle Scholar
  73. 73.
    J. T. Seil and T. J. Webster, Int. J. Nanomed., 7, 2767 (2012).Google Scholar
  74. 74.
    M. Moritz and M. Geszke-Moritz, Chem. Eng. J., 228, 596 (2013).CrossRefGoogle Scholar
  75. 75.
    W. Jiang, H. Mashayekhi, and B. Xing, Environ. Pollut., 157, 1619 (2009).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Bahare Nozari
    • 1
  • Majid Montazer
    • 2
    Email author
  • Mahnaz Mahmoudi Rad
    • 3
  1. 1.Textile DepartmentAmir Kabir University of TechnologyTehranIran
  2. 2.Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI)Amirkabir University of TechnologyTehranIran
  3. 3.Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations