Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2507–2513 | Cite as

Melt-electrospinning of Polyphenylene Sulfide

  • Ying An
  • Shaoyang Yu
  • Shoumeng Li
  • Xun Wang
  • Weimin Yang
  • Maryam Yousefzadeh
  • Mahmoud M. Bubakir
  • Haoyi LiEmail author
Article
  • 14 Downloads

Abstract

Polyphenylene sulfide (PPS) superfine fiber is a promising high efficient material for high temperature dedusting. In this paper, the PPS superfine fiber was prepared by melt-electrospinning for the first time. In order to produce the finer fibers, the polypropylene (PP) was added to PPS and the effects of blending ratio, spinning voltage, spinning temperature, and spinning distance on resultant fibers were investigated systematically. The superfine fibers of PPS with an average diameter of 4.12 μm were successfully prepared at the optimized condition, which was one third of that by melt-spinning method. With the decrease of 76.21 % fibers diameter, the filter efficiency increased from 87.03 % to 98.05 %. The presented method provides a new way for the scalable and green fabrication of PPS superfine fibers.

Keywords

PPS Melt-electrospinning Superfine fiber High temperature filter dedusting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kinnunen, M. Hedman, M. Engblom, D. Lindberg, M. Uusitalo, S. Enestam, and P. Yrjas, Fuel, 5, 241 (2017).CrossRefGoogle Scholar
  2. 2.
    Okoro, S. C. Kiamehr, S. Montgomery, M. Frandsen, and F. J. Pantleon, Mater. Corros., 5, 499 (2017).Google Scholar
  3. 3.
    W. J. Dou, R. Q. Zhang, and Y. Wu, Ifeesd, 75, 68 (2016).Google Scholar
  4. 4.
    W. M. Kang, H. H. Zhao, J. G. Ju, Z. J. Shi, C. M. Qiao, and B. W. Cheng, Fiber. Polym., 17, 1403 (2016).CrossRefGoogle Scholar
  5. 5.
    B. M. Cho, Y. S. Nam, J. Y. Cheon, and W. H. Park, J. Appl. Polym. Sci., 132, 41340 (2015).CrossRefGoogle Scholar
  6. 6.
    F. S. Bates, C. J. Ellison, A. Phatak, D. W. Giles, and C. W. Macosko, Polymer, 48, 3306 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Lee, J. Won, S. Lim, and S. Lee, Polym. Bull., 73, 2639 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Z. Wu, V. R. Chowdari, and R. Seeram, Curr. Org. Chem., 17, 1411 (2013).CrossRefGoogle Scholar
  9. 9.
    H. Y. Li, H. B. Chen, X. F. Zhong, W. F. Wu, Y. M. Ding, and W. M. Yang, J. Appl. Polym. Sci., 131, 40080 (2014).Google Scholar
  10. 10.
    D. W. Hutmacher and P. D. Dalton, Chem-Asian J., 6, 44 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Y. Li, W. M. Yang, H. B. Chen, J. Tan, and P. C. Xie, Aip Conference Proceedings, 1713, 080001 (2016).CrossRefGoogle Scholar
  12. 12.
    T. D. Brown, P. D. Dalton, and D. W. Hutmacher, Adv. Mater., 23, 5651 (2011).CrossRefGoogle Scholar
  13. 13.
    T. D. Brown, A. Slotosch, L. Thibaudeau, A. Taubenberger, D. Loessner, C. Vaquette, P. D. Dalton, and D. W. Hutmacher, Biointerphases, 7, 13 (2012).CrossRefGoogle Scholar
  14. 14.
    F. M. Wunner, O. Bas, N. T. Saidy, P. D. Dalton, P. Emd, and D. W. Hutmacher, Jove-J Vis Exp., 130, 56289 (2017).Google Scholar
  15. 15.
    F. M. Wunner, M. L. Wille, T. G. Noonan, O. Bas, P. D. Dalton, P. Emd, and D. W. Hutmacher, Adv. Mater., 30, 1706570 (2018).CrossRefGoogle Scholar
  16. 16.
    H. Y. Li, Y. Li, W. M. Yang, L. C. Cheng, and J. Tan, Polymers, 9, 2 (2017).CrossRefGoogle Scholar
  17. 17.
    X. H. Li, Y. C. Zhang, H. Y. Li, H. B. Chen, Y. M. Ding, and W. M. Yang, Desalination, 344, 266 (2014).CrossRefGoogle Scholar
  18. 18.
    X. Y. Li, H. C. Liu, J. N. Wang, and C. J. Li, J. Appl. Polym. Sci., 3, 125 (2012).CrossRefGoogle Scholar
  19. 19.
    D. T. Brown, P. D. Dalton, and D. W. Hutmacher, Prog. Polym. Sci., 56, 116 (2016).CrossRefGoogle Scholar
  20. 20.
    L. Chen, J. Kang, and S. Sukigara, Bio-med. Mater. Eng., 24, 1979 (2014).Google Scholar
  21. 21.
    K. Ban, S. H. Bumm, and J. L. White, Int. Polym. Proc., 24, 242 (2009).CrossRefGoogle Scholar
  22. 22.
    M. P. Arrieta, L. Peponi, D. López, and M. F. García, Ind. Crop Prod., 111, 328 (2018).CrossRefGoogle Scholar
  23. 23.
    Y. X. Qin, L. S. Cheng, Y. P. Zhang, X. Q. Chen, X. Wang, X. T. He, W. M. Yang, Y. An, and H. Y. Li, J. Appl. Polym. Sci., 31, 46554 (2018).CrossRefGoogle Scholar
  24. 24.
    C. F. Harwood, I. Vasserman, and T. C. Gsell, U. S. Patent, 6110589 (2000).Google Scholar
  25. 25.
    J. Mokhtari, A. Shams-Nateri, and P. Ferdosi, Fiber. Polym., 15, 1369 (2014).CrossRefGoogle Scholar
  26. 26.
    J. X. He, N. W. Guo, and S. Z. Cui, Iran Polym. J., 20, 9 (2011).Google Scholar
  27. 27.
    A. S. Khan, A. N. Hussain, L. Sidra, Z. Sarfraz, H. Khalid, M. Khan, F. Manzoor, L. Shahzadi, M. Yar, and I. U. Rehman, Mat. Sci. Eng. C-Mater., 80, 387 (2017).CrossRefGoogle Scholar
  28. 28.
    B. Haworth and U. N. Ratnayake, Int. Polym. Proc., 26, 91 (2011).CrossRefGoogle Scholar
  29. 29.
    S. Li, Chem. Fiber Text. Technol., 43, 64 (2014).Google Scholar
  30. 30.
    J. X. Zheng, R. X. Zhu, S. Y. Zhou, B. X. Zhang, J. H. Wang, Y. Li, and J. J. Liao, Chem. Fiber Text. Technol., 46, 72 (2017).Google Scholar
  31. 31.
    ASHRAE, 52.2-1999, USA, Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.Google Scholar
  32. 32.
    L. Zeng, M. Hao, and Y. Qiao, J. Appl. Polym. Sci., 10, 1002 (2017).Google Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Ying An
    • 1
  • Shaoyang Yu
    • 1
  • Shoumeng Li
    • 1
  • Xun Wang
    • 1
  • Weimin Yang
    • 1
  • Maryam Yousefzadeh
    • 2
  • Mahmoud M. Bubakir
    • 3
  • Haoyi Li
    • 1
    Email author
  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Textile EngineeringAmirkabir University of TechnologyTehranIran
  3. 3.Gharyan Engineering College, Mechanical and Industrial Engineering DepartmentGharyan UniversityGharyanLibya

Personalised recommendations