Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2483–2488 | Cite as

Interfacial Polymer Brush Layer for DNA Sensors Based on Graphene Transistors

  • Gwang Mo Ku
  • Jin Woo Kim
  • Yoon-ha Jang
  • Seunghyun Kim
  • Kwang-il Lim
  • Wi Hyoung LeeEmail author
Article
  • 11 Downloads

Abstract

Graphene field-effect transistors (FETs) provide an efficient platform for enabling the label-free detection of DNA molecules. In this study, we used an interfacial polymer brush layer, which is inserted between graphene and SiO2, to enhance the electrical properties of the DNA sensors based on graphene FETs. When a polymer brush with no net dipole moment was used as a surface modification layer of SiO2, high field-effect mobility and stability were obtained in graphene FETs. In addition, it was confirmed that the graphene FETs exhibited stable operation in aqueous environments. To examine the response of DNA sensors based on graphene FETs, four types of DNA oligomers with homogeneous nucleotides (i.e. 12mer of adenine, thymine, cytosine, and guanine) were consecutively dropped onto the graphene surface and changes of electrical properties in the graphene FETs were monitored after complete drying of DNA solutions. These DNA oligomers n-doped the graphene due to the electron-rich characteristics of the nucleobases. In addition, electron and hole mobilities decreased gradually upon the addition of DNA solution because DNA molecules served as charged impurities. Graphene FETs with polymer brush provide a platform for detecting DNA molecules with low concentration.

Keywords

Graphene Polymer brush DNA Field-effect transistor Sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Suvarnaphaet and S. Pechprasarn, Sensors (Basel), 17, (2017).Google Scholar
  2. 2.
    M. D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, and L. Torsi, Mater Today, 14, 424 (2011).CrossRefGoogle Scholar
  3. 3.
    R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai, Proc. Natl. Acad. Sci. USA, 100, 4984 (2003).CrossRefGoogle Scholar
  4. 4.
    N. S. Green and M. L. Norton, Anal. Chim. Acta, 853, 127 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Varghese, S. Varghese, S. Swaminathan, K. Singh, and V. Mittal, Electronics, 4, 651 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Wang, I. S. Cole, and Q. Li, RSC Adv., 6, 89867 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu, J. Dai, S. Fan, and Z. Zhang, Biomaterials, 35, 5041 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, Nano Lett., 9, 3318 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Pumera, Mater Today, 14, 7 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Afsahi, M. B. Lerner, J. M. Goldstein, J. Lee, X. Tang, D. A. B. Jr, D. Pana, L. Locascio, A. Walker, and B. R. G. Francie Barrona, Biosens Bioelectron., 100, 85 (2018).CrossRefGoogle Scholar
  11. 11.
    T. Y. Chen, P. T. K. Loan, C. L. Hsu, Y. H. Lee, J. T. W. Wang, K. H. Wei, C. T. Lin, and L. J. Li, Biosens Bioelectron., 41, 103 (2013).CrossRefGoogle Scholar
  12. 12.
    Z. Chao, H. Le, Z. Hong, S. Zhongyue, Z. Zhiyong, and Z. Guo-Jun, ACS Appl. Mater. Interfaces, 7, 16954 (2015).Google Scholar
  13. 13.
    M. H. Steinberg, Am. J. Hematol. Oncol., 43, 110 (1993).CrossRefGoogle Scholar
  14. 14.
    P. K. Menon, K. Kapila, and V. C. Ohri, Med. J. Armed. Forces India, 55, 229 (1999).CrossRefGoogle Scholar
  15. 15.
    M. T. Hwang, P. B. Landon, J. Lee, D. Choi, A. H. Mo, G. Glinsky, and R. Lal, Proc. Natl. Acad. Sci. USA, 113, 7088 (2016).CrossRefGoogle Scholar
  16. 16.
    S. J. Heerema and C. Dekker, Nat. Nanotechnol., 11, 127 (2016).CrossRefGoogle Scholar
  17. 17.
    G. M. Ku, E. Lee, B. Kang, J. H. Lee, K. Cho, and W. H. Lee, RSC Adv., 7, 27100 (2017).CrossRefGoogle Scholar
  18. 18.
    W. H. Lee and Y. D. Park, Adv. Mater. Interfaces, 5, (2018).Google Scholar
  19. 19.
    W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, and K. Cho, Adv. Mater., 23, 3460 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, Nano Lett., 10, 1149 (2010).CrossRefGoogle Scholar
  21. 21.
    K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi, P. Kim, and M. S. Fuhrer, Nano Lett., 13, 3576 (2013).CrossRefGoogle Scholar
  22. 22.
    J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys., 4, 377 (2008).CrossRefGoogle Scholar
  23. 23.
    S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, Nano Lett., 12, 964 (2012).CrossRefGoogle Scholar
  24. 24.
    X. Wang, J. B. Xu, C. Wang, J. Du, and W. Xie, Adv. Mater., 23, 2464 (2011).CrossRefGoogle Scholar
  25. 25.
    Z. Liu, A. A. Bol, and W. Haensch, Nano Lett., 11, 523 (2011).CrossRefGoogle Scholar
  26. 26.
    N. Cernetic, D. O. Hutchins, H. Ma, and A. K. Y. Jen, Appl. Phys. Lett., 106, 021603 (2015).CrossRefGoogle Scholar
  27. 27.
    S. A. DiBenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater., 21, 1407 (2009).CrossRefGoogle Scholar
  28. 28.
    A. Ulman, Chem. Rev., 96, 1533 (1996).CrossRefGoogle Scholar
  29. 29.
    K. V. Nguyen, M. M. Payne, J. E. Anthony, J. H. Lee, E. Song, B. Kang, K. Cho, and W. H. Lee, Sci. Rep., 6, 33224 (2016).CrossRefGoogle Scholar
  30. 30.
    K. Park, S. H. Park, E. Kim, J.-D. Kim, S.-Y. An, H. S. Lim, H. H. Lee, D. H. Kim, D. Y. Ryu, D. R. Lee, and J. H. Cho, Chem. Mater., 22, 5377 (2010).CrossRefGoogle Scholar
  31. 31.
    W. H. Lee, H. H. Choi, D. H. Kim, and K. Cho, Adv. Mater., 26, 1660 (2014).CrossRefGoogle Scholar
  32. 32.
    H. Tian, L. Wang, Z. Sofer, M. Pumera, and A. Bonanni, Sci. Rep., 6, 33046 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Gwang Mo Ku
    • 1
  • Jin Woo Kim
    • 1
  • Yoon-ha Jang
    • 2
  • Seunghyun Kim
    • 1
  • Kwang-il Lim
    • 2
  • Wi Hyoung Lee
    • 1
    Email author
  1. 1.Department of Organic and Nano System EngineeringKonkuk UniversitySeoulKorea
  2. 2.Department of Chemical and Biological EngineeringSookmyung Women’s UniversitySeoulKorea

Personalised recommendations