Fibers and Polymers

, Volume 19, Issue 12, pp 2465–2477 | Cite as

Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering

  • Parinita Agrawal
  • Krishna PramanikEmail author
  • Akalabya Bissoyi


Blowspinning provides an efficient and easier way of nanofibers preparation that mimics the structure of native extracellular matrix (ECM) and can be applied as scaffolds to regenerate bone tissue at the defect site. The present study reports fabrication of nanofibrous scaffold with novel polymeric combination using polycaprolactone (PCL) and silk fibroin (SF), doped with nanobioactive glass (nBS). The PCL/SF nanofibers of average diameter 570 nm were obtained by blowspinning technique, and BS nanoparticles of 80±20 nm were produced by sol-gel method followed by ball milling. On nBS doping, the resulting 3D composite matrix exhibited excellent surface property, 85–86 % porosity, 2.2 MPa mechanical strength and were effectively colonized by umbilical cord blood derived human mesenchymal stem cells (hMSCs). The nanofibrous-composite scaffolds (PCL/SF/nBS) were superior to PCL and PCL/SF scaffolds in facilitating cell attachment, metabolic activity and distribution. The PCL/SF/nBS scaffolds promoted osteogenic differentiation of hMSCs as evident by immunofluorescence of Runt-related transcription factor 2 (RUNX2) and osteoclacin (OCN) in cell ECM, and upregulation of alkaline phosphatase, RUNX2, OCN and osteopontin genes. Incorporation of nBS into the nanofibrous structure resulted in enhanced biomineralization, thereby improving osteogenic differentiation potential. Thus blowspun PCL/SF/nBS scaffolds were demonstrated to be suitable platform for bone tissue engineering applications.


Blowspinning Polycaprolactone Silk fibroin Bioactive glass Mesenchymal stem cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_8601_MOESM1_ESM.pdf (140 kb)
Supplementary File: S1


  1. 1.
    A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Crit. Rev. Biomed. Eng., 40, 363 (2012).CrossRefGoogle Scholar
  2. 2.
    A. J. Salgado, O. P. Coutinho, and R. L. Reis, Macromol. Biosci., 4, 743 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Bose, M. Roy, and A. Bandyopadhyay, Trends Biotechnol., 30, 546 (2012).CrossRefGoogle Scholar
  4. 4.
    G. Jin, M. P. Prabhakaran, and S. Ramakrishna, Acta Biomater., 7, 3113 (2011).CrossRefGoogle Scholar
  5. 5.
    W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).CrossRefGoogle Scholar
  6. 6.
    T. Li, X. Ding, L. Tian, and S. Ramakrishna, J. Mater. Sci., 52, 10661 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Kouhi, M. Fathi, M. P. Prabhakaran, M. Shamanian, and S. Ramakrishna, Appl. Surf. Sci., doi:10.1016/j.apsusc. 2018.06.239 (2018).Google Scholar
  8. 8.
    C. Bilbao-sainz, B. Chiou, D. Valenzuela-medina, W. Du, K. S. Greforski, T. G. Williams, D. F. Wood, G. M. Glenn, and W. J. Orts, Eur. Polym. J., 54, 1 (2014).CrossRefGoogle Scholar
  9. 9.
    M. A. Brennan, A. Renaud, A. Gamblin, C. D. Arros, S. Nedellec, V. Trichet, and P. Layrolle, Biomed. Mater., 10, 1 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Sohier, P. Corre, C. Perret, P. Pilet, and P. Weiss, Tissue Eng. Part C Methods, 20, 285 (2014).CrossRefGoogle Scholar
  11. 11.
    W. Tutak, S. Sarkar, S. Lin-Gibson, T. M. Farooque, G. Jyotsnendu, D. Wang, J. Kohn, D. Bolikal, and C. G. Simon Jr, Biomaterials, 34, 2389 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Srinivasan, S. S. Chhatre, J. M. Mabry, R. E. Cohen, and G. H. McKinley, Polymer, 52, 3209 (2011).CrossRefGoogle Scholar
  13. 13.
    A. M. Behrens, B. J. Casey, M. J. Sikorski, K. L. Wu, W. Tutak, A. D. Sandler, and P. Kofinas, ACS Macro Lett., 3, 249 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Johnson, A. Niehaus, S. Nichols, D. Lee, J. Koepsel, D. Anderson, and J. Lannutti, J. Biomater. Sci. Polym. Ed., 20, 467 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Xu, Q. Yao, J. M. Miszuk, H. J. Sanyour, Z. Hong, H. Sun, and H. Fong, Colloids Surfaces B Biointerfaces, 171, 31 (2018).CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, C. Gao, and J. Shen, Biomaterials, 23, 4889 (2002).CrossRefGoogle Scholar
  18. 18.
    J. M. Miszuk, T. Xu, Q. Yao, F. Fang, J. D. Childs, Z. Hong, J. Tao, H. Fong, and H. Sun, Appl. Mater Today, 10, 194 (2018).CrossRefGoogle Scholar
  19. 19.
    T. Xu, Z. Liang, B. Ding, Q. Feng, and H. Fong, Polymer (Guildf), 151, 299 (2018).CrossRefGoogle Scholar
  20. 20.
    B. B. Mandal and S. C. Kundu, Biomaterials, 30, 5019 (2009).CrossRefGoogle Scholar
  21. 21.
    N. Bhardwaj and S. C. Kundu, Biomaterials, 33, 2848 (2012).CrossRefGoogle Scholar
  22. 22.
    B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).CrossRefGoogle Scholar
  23. 23.
    S. Saha, B. Kundu, J. Kirkham, D. Wood, S. C. Kundu, and X. B. Yang, PLoS One, 8, e80004 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Wiens, X. Wang, H. C. Schröder, U. Kolb, U. Schlobmacher, H. Ushijima, and W. E. G. Muller, Biomaterials, 31, 7716 (2010).CrossRefGoogle Scholar
  25. 25.
    F. Natalio, T. Link, W. E. G. Müller, H. C. Schroder, F. Cui, X. Wang, and M. Wiens, Acta Biomater., 6, 3720 (2010).CrossRefGoogle Scholar
  26. 26.
    S. I. Roohani-esfahani, S. Nouri-khorasani, Z. F. Lu, R. C. Appleyard, and H. Zreiqat, Acta Biomater., 7, 1307 (2011).CrossRefGoogle Scholar
  27. 27.
    G. M. Luz and J. F. Mano, Compos. Sci. Technol., 70, 1777 (2010).CrossRefGoogle Scholar
  28. 28.
    M. Dominici, K. L. Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz, Cytotherapy, 8, 315 (2006).CrossRefGoogle Scholar
  29. 29.
    H. Pirayesh and J. A. Nychka, J. Am. Ceram. Soc., 96, 1643 (2013).CrossRefGoogle Scholar
  30. 30.
    P. Agrawal, K. Pramanik, A. Biswas, and R. K. Patra, J. Biomed. Mater. Res. Part A, 106, 397 (2018).CrossRefGoogle Scholar
  31. 31.
    P. Agrawal, K. Pramanik, V. Vishwanath, A. Biswas, A. Bissoyi, and P. K. Patra, J. Biomed. Mater. Res. -Part B Appl. Biomater. doi:10.1002/jbm.b.34074 (2018).Google Scholar
  32. 32.
    A. El-Fiqi and H.-W. Kim, RSC Adv., 4, doi:10.1039/c3ra45858j (2014).Google Scholar
  33. 33.
    P. Agrawal and K. Pramanik, Tissue Eng. Regen. Med., 13, 485 (2016).CrossRefGoogle Scholar
  34. 34.
    H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009).CrossRefGoogle Scholar
  35. 35.
    S. N. Alhosseini, F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, S. Kargozar, and N. Jalali, Int. J. Nanomed., 7, 25 (2012).Google Scholar
  36. 36.
    S. Gautam, C. F. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, Mater. Sci. Eng. C, 34, 402 (2014).CrossRefGoogle Scholar
  37. 37.
    R. Nazrov, H.-J. Jin, and D. L. Kaplan, Biomacromolecules, 5, 718 (2004).CrossRefGoogle Scholar
  38. 38.
    B. N. Singh, N. N. Panda, R. Mund, and K. Pramanik, Carbohydr. Polym., 151, 335 (2016).CrossRefGoogle Scholar
  39. 39.
    K.-W. Lee, S. Wang, M. J. Yaszemski, and L. Lu, Biomacromolecules, 11, 682 (2010).CrossRefGoogle Scholar
  40. 40.
    N. N. Panda, A. Biswas, K. Pramanik, and S. Jonnalagadda, J. Biomed. Mater. Res. - Part B Appl. Biomater., 103, 971 (2015).CrossRefGoogle Scholar
  41. 41.
    S. Heinemann, C. Heinemann, M. Jäger, J. Neunzehn, H. P. Wiesmann, and T. Hanke, ACS Appl. Mater. Interfaces, 3, 4323 (2011).CrossRefGoogle Scholar
  42. 42.
    J. A. Sowjanya, J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, and N. Selvamurugan, Colloids Surfaces B Biointerfaces, 109, 294 (2013).CrossRefGoogle Scholar
  43. 43.
    T. Xu, J. M. Miszuk, Y. Zhao, H. Sun, and H. Fong, Adv Healthc Mater., 4, 2238 (2015).CrossRefGoogle Scholar
  44. 44.
    Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, Mater. Sci. Eng. C, 30, 1014 (2010).CrossRefGoogle Scholar
  45. 45.
    A. Haider, S. Kwak, K. C. Gupta, and I. Kang, J. Nanomater., 2015, doi:10.1155/2015/832762 (2015).Google Scholar
  46. 46.
    Y. Zheng, J. Miao, N. Maeda, D. Frey, R. J. Linhardt, and T. J. Simmons, J. Mater. Chem. A, 2, 15029 (2014).CrossRefGoogle Scholar
  47. 47.
    S. Zohoori, L. Karimi, and S. Ayaziyazdi, J. Ind. Eng. Chem., 20, doi:10.1016/j.jiec.2013.10.062 (2014).Google Scholar
  48. 48.
    N. M. Bedford and A. J. Steckl, ACS Appl. Mater. Interfaces, 2, doi:10.1021/am1005089 (2010).Google Scholar
  49. 49.
    K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biomaterials, 27, 3413 (2006).CrossRefGoogle Scholar
  50. 50.
    M. Wiens, T. A. Elkhooly, H. C. Schröder, T. H. A. Mohamed, and W. E. G. Müller, Acta Biomater., 10, 4456 (2014).CrossRefGoogle Scholar
  51. 51.
    K. C. Kavya, R. Jayakumar, S. Nair, and K. P. Chennazhi, Int. J. Biol. Macromol., 59, 255 (2013).CrossRefGoogle Scholar
  52. 52.
    Q. Yao, J. G. L. Cosme, T. Xu, J. M. Miszuk, P. H. S. Picciani, H. Fong, and H. Sun, Biomaterials, 115, 115 (2017).CrossRefGoogle Scholar
  53. 53.
    C. L. Norton, U.S. Patent, 2,048,651 (1936).Google Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Parinita Agrawal
    • 1
  • Krishna Pramanik
    • 1
    Email author
  • Akalabya Bissoyi
    • 1
  1. 1.Centre of Excellence in Tissue Engineering, Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations