Advertisement

Fibers and Polymers

, Volume 19, Issue 12, pp 2498–2506 | Cite as

Comparison on Properties and Efficiency of Bacterial and Electrospun Cellulose Nanofibers

  • Swaminathan Jiji
  • Sukumar Thenmozhi
  • Krishna Kadirvelu
Article
  • 11 Downloads

Abstract

Cellulose nanofibers were prepared from bacterial synthesis (bottom up approach) and electrospinning technique (top down method). Significant differences are noticed between bacterial (BC) and electrospun cellulose nanofibers (EC) in their properties such as diameter of fibers, decomposition temperature, surface area and mechanical strength. Filtration of cadmium oxide micro-particles and Staphylococcus aureus bio-aerosol using BC and EC was prominently influenced by their properties. Furthermore, in-vitro release of sparingly water soluble drug, ibuprofen was carried out using BC and EC as carrier materials.

Keywords

Bacterial cellulose nanofibers Electrospun cellulose nanofibers Characterization Filtration Transdermal drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12221_2018_8527_MOESM1_ESM.pdf (219 kb)
Comparison on Properties and Efficiency of Bacterial and Electrospun Cellulose Nanofibers

References

  1. 1.
    S. Sheykhnazari, T. Tabarsa, A. Ashori, A. Shakeri, and M. Golalipour, Carbohydr. Polym., 86, 1187 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Ul-Islam, T. Khan, and J. K. Park, Carbohydr. Polym., 88, 596 (2012).CrossRefGoogle Scholar
  3. 3.
    A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. L. Kaplan, M. Brittberg, and P. Gatenholm, Biomaterials, 26, 419 (2005).CrossRefGoogle Scholar
  4. 4.
    C. W. Kim, D. S. Kim, S. Y. Kang, M. Marquez, and Y. L. Joo, Polymer, 47, 5097 (2006).CrossRefGoogle Scholar
  5. 5.
    L. Fu, J. Zhang, and G. Yang, Carbohydr. Polym., 92, 1432 (2013).CrossRefGoogle Scholar
  6. 6.
    Z. Shi, Y. Zhang, G. O. Phillips, and G. Yang, Food Hydrocolloids, 35, 539 (2014).CrossRefGoogle Scholar
  7. 7.
    Y. Z. Wan, H. Luo, F. He, H. Liang, Y. Huang, and X. L. Li, Compos. Sci. Technol., 69, 1212 (2009).CrossRefGoogle Scholar
  8. 8.
    A. W. Carpenter, C. F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).CrossRefGoogle Scholar
  9. 9.
    T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).CrossRefGoogle Scholar
  10. 10.
    W. J. Liu, H. Jiang, and H. Q. Yu, Green Chem., 17, 4888 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Ma, C. Burger, B. S. Hsiao, and B. Chu, Biomacromolecules, 12, 970 (2011).CrossRefGoogle Scholar
  12. 12.
    M. J. Lundahl, V. Klar, L. Wang, M. Ago, and O. J. Rojas, Ind. Eng. Chem. Res., 56, 8 (2016).CrossRefGoogle Scholar
  13. 13.
    F. Mohammadkazemi, M. Azin, and A. Ashori, Carbohydr. Polym., 117, 518 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Bielecki in “Bacterial Cellulose”, Biopolymers online (A. Krystynowicz, M. Turkiewicz, and H. Kalinowska Eds.), Vol. 5, pp.37–46, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2005.Google Scholar
  15. 15.
    E. J. Vandamme, S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf, Polym. Degrad. Stab., 59, 93 (1998).CrossRefGoogle Scholar
  16. 16.
    M. Iguchi, S. Yamanaka, and A. Budhiono, J. Mater. Sci., 35, 261 (2000).CrossRefGoogle Scholar
  17. 17.
    S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, Mater. Sci. Eng., B., 217, 36 (2017).CrossRefGoogle Scholar
  18. 18.
    K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, and W. H. Park, Adv. Drug Deliv. Rev., 61, 1020 (2009).CrossRefGoogle Scholar
  19. 19.
    L. Meli, J. Miao, J. S. Dordick, and R. J. Linhardt, Green Chem., 12, 1883 (2010).CrossRefGoogle Scholar
  20. 20.
    A. Frenot, M. W. Henriksson, and P. Walkenstrom, J. Appl. Polym. Sci., 103, 1473 (2007).CrossRefGoogle Scholar
  21. 21.
    M. Gopiraman, A. W. Jatoi, S. Hiromichi, K. Yamaguchi, H. Y. Jeon, I. M. Chung, and I. S. Kim, Carbohydr. Polym., 149, 51 (2016).CrossRefGoogle Scholar
  22. 22.
    V. Thavasi, G. Singh, and S. Ramakrishna, Energy Environ. Sci., 1, 205 (2008).CrossRefGoogle Scholar
  23. 23.
    N. Daels, S. De Vrieze, I. Sampers, B. Decostere, P. Westbroek, A. Dumoulin, P. Dejans, K. De Clerck, and S. W. H. Van Hulle, Desalination, 275, 285 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Aliabadi, M. Irani, J. Ismaeili, H. Piri, and M. Javad Parnian, Chem. Eng. J., 220, 223 (2013).CrossRefGoogle Scholar
  25. 25.
    A. R. Keshtkar, M. Irani, and M. A. Moosavian, J. Radioanal. Nucl. Chem. 295, 563 (2013).CrossRefGoogle Scholar
  26. 26.
    C. Xiang and N. C. Acevedo, Polymers, 9, 179 (2017).CrossRefGoogle Scholar
  27. 27.
    A. J. Silvestre, C. S. Freire, and C. P. Neto, Expert Opin Drug Deliv., 11, 1113 (2014).CrossRefGoogle Scholar
  28. 28.
    M. R. Prausnitz and R. Langer, Nat. Biotechnol., 26, 1261 (2008).CrossRefGoogle Scholar
  29. 29.
    I. F. Almeida, T. Pereira, N. H. C. S. Silva, F. P. Gomes, A. J. D. Silvestre, C. S. R. Freire, and P. C. Costa, Biopharm., 86, 332 (2014).CrossRefGoogle Scholar
  30. 30.
    J. A. Subramony, Int. J. Pharm., 455, 14 (2013).CrossRefGoogle Scholar
  31. 31.
    S. M. Al-Saidan, J. Controlled Release, 100, 199 (2004).CrossRefGoogle Scholar
  32. 32.
    F. Cilurzo, E. Alberti, P. Minghetti, C. G. M. Gennari, A. Casiraghi, and L. Montanari, J. Pharm., 386, 71 (2010).Google Scholar
  33. 33.
    L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).CrossRefGoogle Scholar
  34. 34.
    W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, Biomacromolecules, 8, 1 (2007).CrossRefGoogle Scholar
  35. 35.
    Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen, and S. H. Yu, Angew. Chem., 125, 10 (2013).Google Scholar
  36. 36.
    Y. Wu, F. Wang, and Y. Huang, Compos. Sci. Technol., 159, 70 (2018).CrossRefGoogle Scholar
  37. 37.
    H. Yousefi, M. Faezipour, S. Hedjazi, M. M. Mousavi, Y. Azusa, and A. H. Heidari, Ind. Crops Prod., 43, 737 (2013).CrossRefGoogle Scholar
  38. 38.
    S. Mohammadzadehmoghadam, Y. Dong, and I. Jeffery Davies, J. Polym. Sci. Part B: Polym. Phys., 53, 1171 (2015).CrossRefGoogle Scholar
  39. 39.
    M. Gopiraman, H. Bang, G. Yuan, C. Yin, K. H. Song, J. S. Lee, I-M. Chung, R. Karvembu, and I. S. Kim, Carbohydr. Polym., 132, 554 (2015).CrossRefGoogle Scholar
  40. 40.
    K. Li, J. Wang, X. Liu, X. Xiong, and H. Liu, Carbohydr. Polym., 90, 1573 (2012).CrossRefGoogle Scholar
  41. 41.
    M. C. I. M. Amin, N. Ahmad, N. Halib, and I. Ahmad, Carbohydr. Polym., 88, 465 (2012).CrossRefGoogle Scholar
  42. 42.
    R. Krishnan, S. Sundarrajan, and S. Ramakrishna, Macromol. Mater. Eng., 298, 1034 (2013).CrossRefGoogle Scholar
  43. 43.
    E. Trovatti, C. S. Freire, P. C. Pinto, I. F. Almeida, P. Costa, A. J. Silvestre, C. P. Net, and C. Rosado, Int. J. Pharm., 435, 83 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Swaminathan Jiji
    • 1
  • Sukumar Thenmozhi
    • 1
  • Krishna Kadirvelu
    • 1
  1. 1.DRDO-BU Center for Life SciencesBharathiar University CampusCoimbatoreIndia

Personalised recommendations