Fibers and Polymers

, Volume 19, Issue 12, pp 2581–2589 | Cite as

Low Velocity Impact Behavior of 3D Hollow Core Sandwich Composites Produced with Flat-Knitted Spacer Fabrics

  • Mohammad Azadian
  • Hossein HasaniEmail author
  • Mahmoud Mehrdad Shokrieh


Impact failure of newly-designed textile composites from three-dimensional integrated weft-knitted spacer fabrics (3D-IWK-SF) was aimed to be investigated under drop weight loading. Using a computerized flat knitting machine, three different 3D-IWK-SF as the composite reinforcements varied in their cross-sectional shapes, were produced from E-glass yarns. The produced fabrics were then impregnated with unsaturated polyester resin via the vacuum assisted resin transfer molding (VARTM) which eventually results in 3D integrated spacer weft-knitted sandwich composites (3D-IWK-SC). For comparing the results, an additional core/sheet sandwich composite composed of the same sheet and the polyurethane foam core was also fabricated. From the resulted values of contact force, it was concluded that 3D-IWK-SC of V-shaped crosssection had the highest resistance against low velocity impact load. On the other hand, the evaluated damaged area of both Vshaped 3D-IWK-SC and the foam core sandwich composites were lower than the other samples. Moreover, it was observed that matrix crack-formation in face-sheets of all samples as well as transversely propagated cracks at the connecting layers of 3D-IWK-SCs were of dominant failure modes under drop weight impact test, while no sign of face-core de-bonding were observed for all type of 3D-IWK-SCs.


Flat weft knitted spacer composites 3D Hollow core sandwich composite Low velocity impact behavior Damage Failure mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. T. Peters, “Handbook of Composites”, 2nd ed. pp.254–290, Chapman & Hall, 1998.CrossRefGoogle Scholar
  2. 2.
    J. Herup Eric and N. Palazotto Anthony, Compos. Sci. Technol., 57, 1581 (1997).CrossRefGoogle Scholar
  3. 3.
    W. He, J. Liu, and B. Tao, Compos. Struct., 158, 30 (2016).CrossRefGoogle Scholar
  4. 4.
    K. Vaidya Uday, S. Pillay, and S. Bartus, Mater. Sci. Eng., 428, 59 (2006).CrossRefGoogle Scholar
  5. 5.
    K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, Compos. Pt. A-Appl. Sci. Manuf., 63, 111 (2014).Google Scholar
  6. 6.
    P. Ma, F. Zhang, Z. Gao, G. Jiang, and Y. Zhu, Compos. Pt. B-Eng., 56, 847 (2014).CrossRefGoogle Scholar
  7. 7.
    J. H. Park, S. K. Ha, K. W. Kang, C. W. Kim, and H. S. Kim, J. Mater. Proc. Tech., 201, 425 (2008).CrossRefGoogle Scholar
  8. 8.
    L. Tong, A. P. Mouritz, and M. K. Bannister, “3D fibre Reinforced Polymer Composites”, 1 st ed., Elsevier, 2002.Google Scholar
  9. 9.
    A. N. Palazotto, L. N. B. Gummadi, U. K. Vaidya, and E. J. Herup, Compos. Struct., 43, 275 (1999).CrossRefGoogle Scholar
  10. 10.
    X. Fan and W. Xiao-qing, Compos. Struct., 92, 412 (2010).CrossRefGoogle Scholar
  11. 11.
    N. Baral, D. D. R. Cartié, I. K. Partridge, C. Baley, and P. Davies, Compos. Pt. B-Eng., doi:10.1016/j.compositesb (2009).Google Scholar
  12. 12.
    K. Imielinska, L. Guillaumat, R. Wojtyra, and M. Castaings, Compos. Pt. B-Eng., 39, 1034 (2008).CrossRefGoogle Scholar
  13. 13.
    R. Seltzer, C. González, R. Muñoz, J. Lorca, and T. Blanco-Varela, Compos. Pt. A-Appl. Sci. Manuf., 45, 49 (2013).CrossRefGoogle Scholar
  14. 14.
    M. V. Hosur, M. R. Karim, and S. Jeelani, Compos. Struct., 61, 89 (2003).CrossRefGoogle Scholar
  15. 15.
    H. Hu, B. Sun, H. Sun, and B. Gu, J. Compos. Mater., 44, 593 (2010).CrossRefGoogle Scholar
  16. 16.
    M. V. Hosur, A. Abraham, S. Jeelani, and U. K. Vaidya, J. Compos. Mater., 35, 1111 (2001).CrossRefGoogle Scholar
  17. 17.
    D. Zhang, Y. Sun, L. Chen, and N. Pan, Mater. Des., 50, 750 (2013).CrossRefGoogle Scholar
  18. 18.
    M. V. Hosur, M. Abdollah, and S. Jeelani, Compos. Struct., 69, 167 (2005).CrossRefGoogle Scholar
  19. 19.
    V. Herb, E. Martin, and G. Couégnat, Compos. Pt. A-Appl. Sci. Manuf., 43, 247 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Abounaim, G. Hoffmann, O. Diestel, and C. Cherif, Compos. Sci. Technol., 70, 363 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Abounaim, G. Hoffmann, O. Diestel, and C. Cherif, Text. Res. J., 79, 596 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Abounaim, O. Diestel, G. Hoffmann, and C. Cherif, J. Reinf. Plast. Comp., 731, 6844 (2010).Google Scholar
  23. 23.
    S. Hassanzadeh, H. Hasani, and M. Zarrebini, Compos. Pt. A-Appl. Sci. Manuf., 91, 65 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Hassanzadeh, H. Hasani, and M. Zarrebini, Compos. Struct., 184, 935 (2018).CrossRefGoogle Scholar
  25. 25.
    S. Hassanzadeh, H. Hasani, and M. Zarrebini, J. Sandwich Struct. Mater., doi:10.1177/1099636217716575, 1 (2017).Google Scholar
  26. 26.
    S. Hamedi, H. Hasani, and S. H. Dibajian, J. Compos. Mater., 51, 1887 (2017).CrossRefGoogle Scholar
  27. 27.
    E. Omrani, H. Hasani, and S. H. Dibajian, Appl. Compos. Mater., doi:10.1007/s10443-017-9613-9, 1 (2017).Google Scholar
  28. 28.
    E. Omrani, H. Hasani, and F. Esmaeili, J. Appl. Polym. Sci., 135, 46074 (2018).CrossRefGoogle Scholar
  29. 29.
    M. Azadian, H. Hasani, and M. M. Shokrieh, J. Ind. Text., 48, 58 (2017).CrossRefGoogle Scholar
  30. 30.
    M. N. Damghani and A. M. Gonabadi, Mater. Sci. Eng. J., 8, 52 (2017).Google Scholar
  31. 31.
    G. Neje and B. K. Behera, Appl. Compos. Mater., 25, 725 (2018).CrossRefGoogle Scholar
  32. 32.
    X. Chen, Y. Sun, and X. Gong, Text. Res. J., 78, 9 (2008).Google Scholar
  33. 33.
    S. A. Hosseini, M. Sadeghi, and R. M. Moghadam, J. Compos. Mater., 49, 3285 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Mohammad Azadian
    • 1
  • Hossein Hasani
    • 1
    Email author
  • Mahmoud Mehrdad Shokrieh
    • 2
  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Composites Research Laboratory, Excellence Center in Experimental Mechanics and Dynamics, Department of Mechanical EngineeringIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations