Fibers and Polymers

, Volume 19, Issue 12, pp 2478–2482 | Cite as

Improved Mechanical and Electrical Properties of Carbon Nanotube Yarns by Wet Impregnation and Multi-ply Twisting

  • Yu Ri Lee
  • Junbeom Park
  • Youngjin Jeong
  • Jong S. Park


Carbon nanotube (CNT) fibers, composed entirely of CNT bundles, have inferior mechanical properties as adjacent CNTs slide past each other when an external force is applied. Numerous surface coatings have been tried, but all these approaches have caused severe damage to the electrical properties of the resulting fibers. As a measure to address these problems, we present an effective method for the enhanced mechanical and electrical properties of CNT yarns by wet impregnation with a poly(vinylidene fluoride)/ionic liquid (PVDF/IL) composite and subsequent multiply twisting. Single twisting of three-ply yarns showed a superior electrical conductivity of up to 1500 S/cm, while braided twisting of pretwisted yarns exhibited excellent tensile performances, with a load capacity of 3.2 N, tensile strength of 12.7 g/de, and tensile strain of 35.2 %. The polarized Raman measurements confirmed the elevated CNT quality and high alignment of CNT bundles. The proposed approach of impregnated and twisted CNT yarns will lead to a variety of potential applications in sensors/actuators, e-textile devices, and fiber-shaped electrodes, which simultaneously requires ultra-light weight and good electrical and tensile properties.


Carbon nanotube Multiply twisted yarns Conducting fiber Tensile performance Electrical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. H. Kim, C. S. Haines, N. Li, K. J. Kim, T. J. Mun, C. S. Choi, J. T. Di, Y. J. Oh, J. P. Oviedo, J. Bykova, S. L. Fang, N. Jiang, Z. F. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M. S. Lucas, L. F. Drummy, B. Maruyama, D. Y. Lee, X. Lepro, E. L. Gao, D. Albarq, R. Ovalle-Robles, S. J. Kim, and R. H. Baughman, Science, 357, 773 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. B. Li, Y. Y. Shang, X. D. He, Q. Y. Peng, S. Y. Du, E. Z. Shi, S. T. Wu, Z. Li, P. X. Li, and A. Y. Cao, ACS Nano, 7, 8128 (2013).CrossRefGoogle Scholar
  3. 3.
    O. K. Park, Y. Jeong, J. K. Lee, and B. C. Ku, Sci. Adv. Mater., 9, 227 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Y. Kim and D. H. Kim, Text. Sci. Eng., 53, 7 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Song, S. Kim, S. Yoon, D. Cho, and Y. Jeong, Fiber. Polym., 15, 762 (2014).CrossRefGoogle Scholar
  6. 6.
    E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, Langmuir, 23, 3970 (2007).CrossRefGoogle Scholar
  7. 7.
    D. W. Chae, S. C. Hawkins, and C. Huynh, Text. Sci. Eng., 55, 71 (2018).Google Scholar
  8. 8.
    A. T. Sepúlveda, R. G. de Villoria, J. C. Viana, A. J. Pontes, B. L. Wardle, and L. A. Rocha, Nanoscale, 5, 4847 (2013).CrossRefGoogle Scholar
  9. 9.
    D. W. Cho and Y. J. Jeong, Mater. Lett., 160, 503 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Park, Y. Jung, G. W. Lee, J. P. Hinestroza, and Y. Jeong, Polymer, 13, 874 (2012).Google Scholar
  11. 11.
    K. Liu, Y. H. Sun, R. F. Zhou, H. Y. Zhu, J. P. Wang, L. Liu, S. S. Fan, and K. L. Jiang, Nanotechnology, 21, 045708 (2010).CrossRefGoogle Scholar
  12. 12.
    M. H. Miao, Carbon, 49, 3755 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. L. Li, I. A. Kinloch, and A. H. Windle, Science, 304, 276 (2004).CrossRefGoogle Scholar
  14. 14.
    M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010).CrossRefGoogle Scholar
  15. 15.
    P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, and G. Sakellariou, RSC Adv., 4, 2911 (2014).CrossRefGoogle Scholar
  16. 16.
    R. Ma, J. Lee, D. Choi, H. Moon, and S. Baik, Nano Lett., 14, 1944 (2014).CrossRefGoogle Scholar
  17. 17.
    T. Torimoto, T. Tsuda, K. Okazaki, and S. Kuwabata, Adv. Mater., 22, 1196 (2010).CrossRefGoogle Scholar
  18. 18.
    B. C. Kim, J. Y. Hong, G. G. Wallace, and H. S. Park, Adv. Energy Mater., 5, 1500959 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. L. Zi, L. Lin, J. Wang, S. H. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, and Z. L. Wang, Adv. Mater., 27, 2340 (2015).CrossRefGoogle Scholar
  20. 20.
    V. Cauda, S. Stassi, K. Bejtka, and G. Canayese, ACS Appl. Mater. Interfaces, 5, 6430 (2013).CrossRefGoogle Scholar
  21. 21.
    G. X. Chen, S. C. Zhang, Z. Zhou, and Q. F. Li, Polym. Compos., 36, 94 (2015).CrossRefGoogle Scholar
  22. 22.
    T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science, 321, 1468 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Shim and H. J. Kim, ACS Nano, 3, 1693 (2009).CrossRefGoogle Scholar
  24. 24.
    P. F. Salazar, K. J. Chan, S. T. Stephens, and B. A. Cola, J. Electrochem. Soc., 161, 481 (2014).CrossRefGoogle Scholar
  25. 25.
    Q. Wang, J. F. Dai, W. X. Li, Z. Q. Wei, and J. L. Jiang, Compos. Sci. Technol., 68, 1644 (2008).CrossRefGoogle Scholar
  26. 26.
    D. E. Esentalovich, R. J. Headrick, F. Mirri, J. Hao, N. Behabtu, C. C. Young, and M. Pasquali, ACS Appl. Mater. Interfaces, 9, 36189 (2017).CrossRefGoogle Scholar
  27. 27.
    B. Han, X. Xue, Y. Xu, Z. Zhao, E. Guo, C. Liu, L. Luo, and H. Hou, Carbon, 122, 496 (2017).CrossRefGoogle Scholar
  28. 28.
    J. Jager, J. A. Juijn, C. J. M. van den Heuvel, and R. A. Huijts, J. Appl. Polym. Sci., 57, 1429 (1995).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  • Yu Ri Lee
    • 1
  • Junbeom Park
    • 2
  • Youngjin Jeong
    • 3
  • Jong S. Park
    • 1
  1. 1.Department of Organic Material Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Institute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeonbukKorea
  3. 3.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations