Fibers and Polymers

, Volume 19, Issue 12, pp 2489–2497 | Cite as

Study of Application of PTFE Fiber in Self-cleaning Filter Media

  • Jin Long
  • Min TangEmail author
  • Yun Liang
  • Jian Hu


To provide protection against the adverse effects of high concentration dust, self-cleaning filter was applied in the air inlet system of engine and gas turbine. PTFE fiber could have a great application in self-cleaning filter media due to its low surface free energy. In this work, new PTFE/cellulose fiber composite media for self-cleaning filter were prepared by wet-laid method. The effect of PTFE fiber on physical properties and filtration performance were studied. It was found that PTFE fiber was well dispersed in water without bubble formation after proper surfactant was applied. The initial figure of merit increased significantly when percentage of PTFE fiber was higher. For self-cleaning performance, particles were easier to be detached from composite media with higher PTFE fiber percentage, which resulted in lower average pressure drop. It was estimated that in the loading process, energy consumption of media containing 30 % and 60 % PTFE fiber was 32 % and 47 % less than that of pure cellulose media, respectively. PTFE fiber significantly improved the self-cleaning performance due to lower surface free energy of composite media and higher efficiency per unit thickness.


PTFE fibers Filter media Air filtration Dust Self-cleaning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Jaroszczyk, J. Wake, and M. J. Connor, J. Eng. Gas Turbines Power, 115, 693 (1993).CrossRefGoogle Scholar
  2. 2.
    M. Wilcox, R. Kurz, and K. Brun, Int. J. Rotating Mach., 2012, 128134–1 (2012).CrossRefGoogle Scholar
  3. 3.
    U. Igie and M. Orlando, J. Eng. Gas Turbines Power, 136, 091201–1 (2014).CrossRefGoogle Scholar
  4. 4.
    Eurovent 4/21, “Calculation Method for the Energy Use Related to Air Filters in general Ventilation Systems”, 1st ed., pp.3-4, EUROVENT, Paris, 2014.Google Scholar
  5. 5.
    T. Jaroszczyk, S. Petrik, and K. Donahue, J. KONES, 16, 207 (2009).Google Scholar
  6. 6.
    R. S. Barhate and S. Ramakrishna, J. Memb. Sci., 296, 1 (2007).CrossRefGoogle Scholar
  7. 7.
    I. Hutten, “Handbook of Nonwoven Filter Media”, 2nd ed., pp.351–354 & 520–541, Elsevier, Amsterdam, 2016.Google Scholar
  8. 8.
    P. Zadorecki and F. Per, Polym. Compos., 7, 170 (1986).CrossRefGoogle Scholar
  9. 9.
    A. Bismarck, I. Aranberri-Askargorta, J. Springer, T. Lampke, B. Wielage, A. Stamboulis, I. Shenderovich, and H. Limbach, Polym. Compos., 23, 872 (2002).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, G. Zhuang, A. Tang, H. Yuan, Y. Sun, S. Chen, and A. Zheng, Atmos. Environ., 39, 3771 (2005).CrossRefGoogle Scholar
  11. 11.
    T. Cheng, D. Lu, G. Wang, and Y. Xu, Atmos. Environ., 39, 2903 (2005).CrossRefGoogle Scholar
  12. 12.
    Y. Sun, G. Zhuang, Y. Wang, X. Zhao, J. Li, Z. Wang, and Z. An, J. Geophys. Res., 110, D24209 (2005).CrossRefGoogle Scholar
  13. 13.
    K. Kim, C. Lee, I. W. Kim, and J. Kim, Fiber. Polym., 10, 1 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Chen and T. Wakida, J. Appl. Polym. Sci., 63, 1733 (1997).CrossRefGoogle Scholar
  15. 15.
    H. Zhang, Z. Zhang, F. Guo, and W. Liu, Polym. Compos., 30, 1523 (2009).CrossRefGoogle Scholar
  16. 16.
    C. Wang and C. Chen, Polym. Compos., 23, 104 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Wei, Z. Wang, J. Zhang, Y. Wu, Z. Zhang, and C. Xiong, React. Funct. Polym., 65, 127 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Mukhopadhyay, Text. Prog., 41, 195 (2009).CrossRefGoogle Scholar
  19. 19.
    N. Zhang, X. Jin, C. Huang, and Q. Ke, Indian J. Fibre Text. Res., 42, 278 (2017).Google Scholar
  20. 20.
    M. Langner and A. Greiner, Macromol. Rapid Commun., 37, 351 (2016).CrossRefGoogle Scholar
  21. 21.
    ISO 5269–1, “Pulps - Preparation of Laboratory Sheets for Physical Testing - Part 1: Conventional Sheet-former Method”, International Organization for Standardization, Geneva, 2005.Google Scholar
  22. 22.
    D. Packham, Int. J. Adhes. Adhes., 23, 437 (2003).CrossRefGoogle Scholar
  23. 23.
    A. Podgórski, A. Balazy, and L. Gradon, Chem. Eng. Sci., 61, 6804 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Tang, S. Chen, D. Chang, X. Xie, J. Sun, and D. Y. H. Pui, Sep. Purif. Technol., 198, 137 (2017).CrossRefGoogle Scholar
  25. 25.
    VDI 3926 Part 1, “Testing of Cleanable Filter Media - Standard Test for the Evaluation of Cleanable Filter Media”, the Association of German Engineers, Dusseldorf, 2004.Google Scholar
  26. 26.
    ISO 12103–1, “Road Vehicles -Test Contaminants for Filter Evaluation - Part 1: Arizona Test Dust”, International Organization for Standardization, Geneva, 2016.Google Scholar
  27. 27.
    R. Kerekes and C. Schell, J. Pulp Pap. Sci., 18, J32 (1992).Google Scholar
  28. 28.
    W. C. Hinds, “Aerosol Technology”, 2nd ed., pp.182–201, Wiley, New York, 1999.Google Scholar
  29. 29.
    A. F. Diaz and R. M. Felix-Navarro, J. Electrostat., 62, 277 (2004).CrossRefGoogle Scholar
  30. 30.
    M. Tang, D. Thompson, D. Chang, S. Chen, and D. Y. H. Pui, Sep. Purif. Technol., 195, 101 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society, The Korea Science and Technology Center 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp and PapermakingSouth China University of TechnologyGuangzhouP.R. China
  2. 2.Particle Technology Laboratory, Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations