Fibers and Polymers

, Volume 19, Issue 7, pp 1556–1566 | Cite as

Zeolite Integrated Nanocellulose Films for Removal of Loose Anionic Reactive Dye by Adsorption vs. Filtration Mode during Textile Laundering

  • Vanja KokolEmail author
  • Vera Vivod
  • Suzana Arnuš
  • Urh Černigoj
  • Betka Galičič
  • Kristina Obu Vazner
  • Branko Neral
  • Aleš Mihelič


Water stable, flexible and ecological acceptance composite films were prepared by the solvent casting process using native, dealuminated (treated with HCl to affect the surface chemistry and pore structure) and/or surface modified (coated with a cationic surfactant PDADM of different molecular weights) H-ZSM-5 type zeolite of different shapes (spherical vs. rod) and Si/Al ratios (P26 vs. P371) as adsorbents and cellulose nanofibrils (CNFs) as a networking matrix (in a weight ratio of 4:1). The films were tested for removal of the black anionic reactive dye with the highest bleeding effect at the first rinsing cycle of textile laundering. The effects of zeolite structure and surface chemistry on films dye’ removal kinetics from a standardised rinsing bath were investigated for up to 140 min at room temperature and using 0.1 g/l of dye concentration, depending on the film-to-bath weight-to-volume ratios (from 1:10 to 1:1000), thus simulating different rinsing conditions. The results show that up to 80 % of the dye was removed in the first 20 min in the lowest weight-to-volume ratio (1:10), fitting the Langmuir isotherm, and the process followed the pseudo-second order kinetic, yielding a multi-layer adsorption mechanism with a monolayer capacity of ~11 mg/g and ~21 vs. ~30 mg/g by films prepared from native or HCltreated and PDADMA100 vs. PDADMA400 coated P371 zeolites, respectively. Such efficacy was due to the more densely and fully surface-covered longitudinal P371 with PDADM400, given the huge electrostatic attraction sites for dye molecules, compared to the partly interpenetrated PDADM into relatively larger pore-sized (~450 nm vs. 220 nm) of P26. The filtration performance of the films was also examined, be used for the removal of the dye from the rinsing bath, released from the washing drum. An ultra-high flux rate (11.000 kL/m2 h MPa) with 45 % of dye removal efficacy and capacity of ~24 mg/g was provided by films prepared from spherical and aggregated P26PDADMA-400, showing its high potential also as a filter membrane.


Textile Laundering Nanocellulose Zeolite Dye removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Laitala, C. Boks, and I. Grimstad Klepp, Inter. J. Consum. Stud., 35, 254 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Was-Gubala, Science & Justice, 49, 165 (2009).CrossRefGoogle Scholar
  3. 3.
    J. Was-Gubala and E. Grzesiak, Science & Justice, 50, 55 (2010).CrossRefGoogle Scholar
  4. 4.
    T. Uchiyama, A. Kawauchi, and D. L. DuVal, J. Anal. Appl. Pyrolysis, 45, 111 (1998).CrossRefGoogle Scholar
  5. 5.
    Y. Yangxin, J. Zhao, and A. E. Bayly, Chinese. J. Chem. Eng., 16, 517 (2008).CrossRefGoogle Scholar
  6. 6.
    V. V. Antić, M. P. Antić, A. Kronimus, K. Oing, and J. Schwarzbauer, J. Anal. Appl. Pyrolysis, 90, 93 (2011).CrossRefGoogle Scholar
  7. 7.
    B. Neral, S. Arnuš, D. Štanc, T. Vodovnik, P. Lesjak, and I. Doler, “Optimization of Washing Parameters BOM-TIME-40–4,5KG: Research Report”, Maribor: University of Maribor, Faculty of Mechanical Engineering, 2014.Google Scholar
  8. 8.
    M. Krajnc and B. Dolsak, Int. J. Simul. Model., 12, 39 (2013).CrossRefGoogle Scholar
  9. 9.
    P. Velmurugan, V. Rathina Kumar, and G. Dhinakaran, Inter. J. Environ. Sci., 1, 1492 (2011).Google Scholar
  10. 10.
    E. I. Unuabonah and A. Taubert, Appl. Clay Sci., 99, 83 (2014).CrossRefGoogle Scholar
  11. 11.
    M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).CrossRefPubMedGoogle Scholar
  12. 12.
    S. Jin, Y. Chen, and M. Liu, Adv. Mater. Res., 662, 198 (2013).CrossRefGoogle Scholar
  13. 13.
    A. W. Carpenter, C. F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    C. J. Zhou, Q. L. Wu, and T. Z. Lei, Chem. Eng. J., 251, 17 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Wang and Y. Peng, Chem. Eng. J., 156, 11 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, and M. Matsukata, Chem. Lett., 29, 882 (2000).CrossRefGoogle Scholar
  17. 17.
    J. C. Groen, L. A. A. Peffer, J. A. Moulijn, and J. Pérez-Ramírez, Micro. Meso. Mater., 69, 29 (2004).CrossRefGoogle Scholar
  18. 18.
    J. C. Groen, J. A. Moulijn, and J. Pérez-Ramírez, Mater. Chem., 16, 2121 (2006).CrossRefGoogle Scholar
  19. 19.
    J. C. Groen, S. Brouwer, L. A. A. Peffer, and J. Pérez-Ramírez, Part. Part. Syst. Charact., 23, 101 (2006).CrossRefGoogle Scholar
  20. 20.
    J. S. Jung, J. W. Park, and G. Seo, Appl. Catal. A, 288, 149 (2005).CrossRefGoogle Scholar
  21. 21.
    L. Su, L. Liu, J. Zhuang, H. Wang, Y. Li, W. Shen, Y. Xu, and X. Bao, Catal. Lett., 91, 155 (2003).CrossRefGoogle Scholar
  22. 22.
    K. Margeta, N. Zabukovec Logar, M. Šiljeg, and A. Farkaš, “Natural Zeolites in Water Treatment-How Effective is Their Use” (W. Elshorbagy and R. K. Chowdhury Eds.), Chap.5, Water Treatment, Publisher: in Tech, 2013.Google Scholar
  23. 23.
    E. Alver and A. U. Metin, Chem. Eng. J., 200–202, 59 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Dong, D. Wu, X. Chen, and Y. Lin, J. Colloid Interface Sci., 348, 585 (2010).CrossRefPubMedGoogle Scholar
  25. 25.
    C. Li, Y. Dong, D. Wu, L. Peng, and H. Kong, Appl. Clay Sci., 52, 353 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Wang and Z. H. Zhu, J. Hazard. Mater. B, 136, 946 (2006).CrossRefGoogle Scholar
  27. 27.
    I. Humelnicu, A. Baicearnu, M. E. Ignat, and V. Dulman, Proc. Saf. Env. Protec., 105, 274 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Wang, H. Li, S. Xie, S. Liu, and L. Xu, Chemosphere, 65, 82 (2006).CrossRefPubMedGoogle Scholar
  29. 29.
    F. Kooli, L. Yan, R. Al-Faze, and A. Al-Sehimi, Arabian J. Chem., 8, 333 (2015).CrossRefGoogle Scholar
  30. 30.
    Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, and Z. Derriche, Chem. Eng. J., 136, 295 (2008).CrossRefGoogle Scholar
  31. 31.
    M. Akgül, J. Hazard. Mater., 267, 1 (2014).CrossRefPubMedGoogle Scholar
  32. 32.
    F. Kooli, Y. Liu, R. Al-Faze, and A. Al Suhaimi, Appl. Clay Sci., 116–117, 23 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Zaremotlagh and A. Hezarkhani, Env. Earth Sci., 71, 2999 (2014).CrossRefGoogle Scholar
  34. 34.
    C. K. Lim, H. H. Bay, C. H. Neoh, A. Aris, Z. Abdul Majid, and Z. Ibrahim, Environ. Sci. Pollut. Res. Int., 20, 7243 (2013).CrossRefPubMedGoogle Scholar
  35. 35.
    Y. S. Ho and C. C. Chiang, Adsorption, 7, 139 (2001).CrossRefGoogle Scholar
  36. 36.
    F. Ji, C. Li, B. Tang, J. Xu, G. Lu, and P. Liu, Chem. Eng. J., 209, 325 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, T. Nypelö, C. Salas, J. Arboleda, I. C. Hoeger, and O. J. Rojas, J. Renew. Mater., 1, 195 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Biomacromolecules, 9, 1579 (2008).CrossRefPubMedGoogle Scholar
  39. 39.
    ASTM D5758-01:2011, “Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-ray Diffraction”, West Conshohocken, PA, United States, 1–4.Google Scholar
  40. 40.
    C. A. P. Nicolaides, Appl. Catal. A, 185, 211 (1999).CrossRefGoogle Scholar
  41. 41.
    S. Özvatan and Y. Yürüm, Energy Sources, 23, 475 (2001).CrossRefGoogle Scholar
  42. 42.
    SIST EN 60456:2010, “Clothes Washing Machines for Household Use-Methods for Measuring the Performance”, International Standard, 1–141.Google Scholar
  43. 43.
    T. Armaroli, L. J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, and G. Busca, Appl. Catal. A, 306, 78 (2016).CrossRefGoogle Scholar
  44. 44.
    S. S. Pollack, J. W. Adkins, E. L. Wetzel, and D. Newbury, Zeolites, 4, 181 (1984).CrossRefGoogle Scholar
  45. 45.
    S. Figaro, J. P. Avril, F. Brouers, A. Ouensanga, and S. Gaspard, J. Hazard. Mater., 161, 649 (2009).CrossRefPubMedGoogle Scholar
  46. 46.
    R. Han, Y. Wang, Q. Sun, L. Wang, J. Song, X. He, and C. Dou, J. Hazard. Mater., 175, 1056 (2010).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Vanja Kokol
    • 1
    Email author
  • Vera Vivod
    • 1
  • Suzana Arnuš
    • 1
  • Urh Černigoj
    • 2
  • Betka Galičič
    • 2
  • Kristina Obu Vazner
    • 3
  • Branko Neral
    • 1
  • Aleš Mihelič
    • 3
  1. 1.Institute of Engineering Materials and Design, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.BIA Separations d.o.o.AjdovščinaSlovenia
  3. 3.Gorenje d.d.R&D Competence Centre Laundry CareVelenjeSlovenia

Personalised recommendations