Fibers and Polymers

, Volume 19, Issue 3, pp 599–606 | Cite as

Perspective on Carbon Fiber Woven Fabric Electrodes for Structural Batteries

  • Mi Young Park
  • Joo-Hyung Kim
  • Do Kyung Kim
  • Chun Gon Kim
Article
  • 22 Downloads

Abstract

The purpose of this work is to explore effective means of fabricating nanostructure-deposited continuous woven carbon fabric and to investigate the feasibility of using this material in structural battery applications. In order to prove this concept, two types of nanostructured carbon fabric electrodes – one with vertically-aligned carbon nanotubes (VACNTs) formed directly on carbon fabric utilizing iron (Fe) nanoparticles and Al buffer layers, the other with the same VACNTs on a chemical vapor-deposited graphene surface utilizing Ni seed layers on the carbon fabric – were fabricated to investigate material electrical performances as battery electrodes. The reversible specific capacity of 250 mAh/g on average at C/20 with good cyclic retention in these three all-carbon electrodes, including pristine carbon fabric, suggests a promising structural battery electrode for low-current battery applications. Even though the capacity of VACNT-grafted carbon fabrics was limited due to poor wetting of the VACNT forest with electrolyte caused by the lack of functionalization of the VACNT, their excellent cyclic performances and galvanostatic curves support the idea that the carbon nanotube and carbon fabric combination can be utilized in battery applications. However, pristine-carbon fabric is still a good candidate for battery applications because of its simplicity of mass production.

Keywords

Carbon fabric electrode Nanostructured carbon fabric Carbon nanotubes Structural battery Cyclic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Gao, S. P. Adusumilli, J. Turner, L. Lesperance, C. Westgate, and B. Sammakia, J. Nanosci. Nanotechnol., 12, 10 (2012).Google Scholar
  2. 2.
    S. Park, D. W. Park, C. S. Yang, K. R. Kim, J. H. Kwak, H. M. So, C. W. Ahn, B. S. Kim, H. Chang, and J. O. Lee, ACS Nano., 5, 9 (2011).Google Scholar
  3. 3.
    Y. Gao, G. P. Pandey, J. Turner, C. R. Westgate, and B. Sammakia, Nanoscale Res. Lett., 7, 651 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett., 82, 15 (2003).Google Scholar
  5. 5.
    X. Shui and D. D. L. Chung, J. Power Sources, 47, 313 (1994).CrossRefGoogle Scholar
  6. 6.
    D. T. Welna, L. Qu, B. E. Taylor, L. Dai, and M. F. Durstock, J. Power Sources, 196, 1455 (2011).CrossRefGoogle Scholar
  7. 7.
    L. Delzeit, C. V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, and M. Meyyappan, J. Phys. Chem. B, 106, 22 (2002).CrossRefGoogle Scholar
  8. 8.
    M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, and E. S. Aydil, J. Appl. Phys., 108, 053303 (2010).CrossRefGoogle Scholar
  9. 9.
    K. C. Pham, D. H. C. Chua, D. S. McPhail, and A. T. S. Wee, ECS Eletrochem. Lett., 3, 6 (2014).Google Scholar
  10. 10.
    H. Qian, A. R. Kucernak, E. S. Greenhalgh, A. Bismarck, and M. S. P. Shaffer, ACS Appl. Master. Inter., 5, 6113 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Leijonmarck, T. Carlson, G. Lindbergh, L. E. Asp, H. Maples, and A. Bismarck, Compos. Sci. Technol., 89, 149 (2013).CrossRefGoogle Scholar
  12. 12.
    J. K. Lee, K. W. An, J. B. Ju, B. W. Cho, W. I. Cho, D. Park, and K. S. Yun, Carbon, 39, 1299 (2001).CrossRefGoogle Scholar
  13. 13.
    M. H. Kjell, E. Jacques, D. Zenkert, M. Behm, and G. Lindbergh, J. Electrochem. Soc., 158, 12 (2011).CrossRefGoogle Scholar
  14. 14.
    E. Pamula and P. G. Rouxhet, Carbon, 41, 1905 (2003).CrossRefGoogle Scholar
  15. 15.
    A. L. M. Reddy, F. E. Amitha, I. Jafri, and S. Ramaprabhu, Nanoscale Res Lett., 3, 145 (2008).CrossRefGoogle Scholar
  16. 16.
    K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi, Energ. Environ. Sci., 4, 5060 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Moon, Y. H. Jung, and D. K. Kim, J. Power Sources, 294, 386 (2015).CrossRefGoogle Scholar
  18. 18.
    P. R. Kumar, Y. H. Jung, and D. K. Kim, RSC Adv., 5, 79845 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mi Young Park
    • 1
  • Joo-Hyung Kim
    • 2
  • Do Kyung Kim
    • 2
  • Chun Gon Kim
    • 1
  1. 1.Department of Aerospace Engineering, School of Mechanical and Aerospace EngineeringKAISTDaejeonKorea
  2. 2.Department of Materials Science and EngineeringKAISTDaejeonKorea

Personalised recommendations