Fibers and Polymers

, Volume 19, Issue 7, pp 1403–1410 | Cite as

Leveraging the Antibacterial Properties of Knitted Fabrics by Admixture of Polyester-Silver Nanocomposite Fibres

  • Prakash KhudeEmail author
  • Abhijit Majumdar
  • Bhupendra Singh Butola


Leveraging the antibacterial properties of polyester-cotton knitted fabrics has been attempted in this research by admixture of small proportion of polyester-silver nanocomposite fibres. Polyester-cotton (50:50) yarns were spun by mixing 10, 20 and 30 % (wt.%) polyester-silver nanocomposite fibres with normal polyester fibres so that overall proportion of polyester fibre becomes 50 %. The proportion of cotton fibre was constant (50 %) in all the yarns. Three parameters, namely blend proportion (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied, each at three levels, for producing 27 knitted fabrics. Polyester-cotton knitted fabrics prepared from polyester-silver nanocomposite fibres showed equally good antibacterial activity (65-99 %) against both S. aureus and E. coli bacteria. Antibacterial properties were enhanced with the increase in the proportion of polyester-silver nanocomposite fibres, yarn coarseness and increased compactness of knitted fabrics. Yarn count and blend proportion of nanocomposite fibre were found to have very dominant influence in determining the antibacterial properties of knitted fabrics.


Antibacterial activity Knitted fabrics Nano-silver Nanocomposite fibre 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Zanoaga and F. Tanasa, Chem. J. Mold., 9, 14 (2014).CrossRefGoogle Scholar
  2. 2.
    U. Wollina, M. B. Abdel-Naser, and S. Verma in “Skin Physiology and Textiles-Consideration of Basic Interactions”, (U.-C. Hipler and P. Elsner Eds.), pp.1–16, Curr. Probl. Dermatol., KARGER, Basel, 2006.Google Scholar
  3. 3.
    U. Fluhr and P. Elsner in “A New Silver-Loaded Cellulosic Fiber with Antifungal and Antibacterial Properties” (U.-C. Hipler and P. Elsner Eds.), pp.165–178, Curr. Probl. Dermatol., KARGER, Basel, 2006.Google Scholar
  4. 4.
    D. Gupta and S. Bhaumik, Ind. J. Fib. Tex. Res., 32, 254 (2007).Google Scholar
  5. 5.
    A. I. Wasif and S. K. Laga, AUTEX Res. J., 9, 4 (2009).Google Scholar
  6. 6.
    X. Ren, H. B. Kocer, L. Kou, S. D. Worley, R. M. Broughton, Y. M. Tzou, and T. S. Huang, J. Appl. Polym. Sci., 2756, 109 (2008).Google Scholar
  7. 7.
    K. E. Duckett, B. C. Goswami, and H. H. Ramey, Text. Res. J., 49, 262 (1979).CrossRefGoogle Scholar
  8. 8.
    V. K. Kothari, S. M. Ishtiaque, and V. G. Ogale, Ind. J. Fib. Tex. Res., 29, 30 (2004).Google Scholar
  9. 9.
    P. S. Schabes-Retchkiman, G. Canizal, R. Herrera-Becerra, C. Zorrilla, H. B. Liu, and J. A. Ascencio, Opt. Mater., 29, 95 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Gu, P. L. Ho, E. Tong, L. Wang, and B. Xu, Nano Lett., 3, 1261 (2003).CrossRefGoogle Scholar
  11. 11.
    Z. Ahmad, R. Pandey, S. Sharma, and G. K. Khuller, Ind. J. Chest. Dis. Allied. Sci., 48, 171 (2005).Google Scholar
  12. 12.
    P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang, Nanotechnology, 18, 285604 (2007).CrossRefGoogle Scholar
  13. 13.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, Nanomed. Nanotechnol. Biol. Med., 3, 95 (2007).CrossRefGoogle Scholar
  15. 15.
    M. Gouda, J. Ind. Text., 41, 222 (2012).CrossRefGoogle Scholar
  16. 16.
    B. Nowack, H. F. Krug, and M. Height, Environ. Sci. Technol., 45, 1177 (2011).CrossRefPubMedGoogle Scholar
  17. 17.
    S. Y. Yeo and S. H. Jeong, Polym. Int., 52, 1053 (2003).CrossRefGoogle Scholar
  18. 18.
    F. Zhang, X. Wu, and Y. Chen, Fiber. Polym., 10, 496 (2009).CrossRefGoogle Scholar
  19. 19.
    M. D. Teli and J. Sheikh, Fiber. Polym., 13, 1280 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).CrossRefGoogle Scholar
  21. 21.
    R. Purwar, R. Mishra, and M. Joshi, AATCC Rev., 8, 35 (2008).Google Scholar
  22. 22.
    B. Mahltig, D. Fiedler, and H. Bottcher, J. Sol-Gel Sci. Technol., 32, 219 (2004).CrossRefGoogle Scholar
  23. 23.
    I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, and A. Gedanken, Nanotechnology, 19, 1 (2008).CrossRefGoogle Scholar
  24. 24.
    H. J. Lee and S. H. Jeong, Text. Res. J., 74, 442 (2004).CrossRefGoogle Scholar
  25. 25.
    X.-C. Huang, L. Hong, and Y.-Y. Chen, Abstracts of the Fibre Society Symposium, 967 (2009).Google Scholar
  26. 26.
    M. Gorensek and P. Recelj, Text. Res. J., 77, 138 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Gorensek, M. Gorjanc, V. Bukosek, J. Kovac, P. Jovancic, and D. Mihailovic, Text. Res. J., 80, 253 (2010).CrossRefGoogle Scholar
  28. 28.
    P. Gupta, M. Bajpai, and S. K. Bajpai, J. Cott. Sci., 12, 280 (2008).Google Scholar
  29. 29.
    M. L. Gulrajani, D. Gupta, S. Periyasamy, and S. G. Muthu, J. Appl. Poly. Sci., 108, 614 (2008).CrossRefGoogle Scholar
  30. 30.
    M. Joshi and R. Purwar, AATCC Rev., 4, 22 (2004).Google Scholar
  31. 31.
    H. Wang, Q. Wei, and W. Gao, AATCC Rev., 9, 34 (2009).Google Scholar
  32. 32.
    T. Walser, E. Demou, D. J. Lang, and S. Hellweg, Environ. Sci. Technol., 45, 4570 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    L. Geranio, M. Heuberger, and B. Nowack, Environ. Sci. Technol., 43, 8113 (2009).CrossRefPubMedGoogle Scholar
  34. 34.
    T. M. Benn and P. Westerhoff, Environ. Sci. Technol., 42, 4133 (2008).CrossRefPubMedGoogle Scholar
  35. 35.
    H. J. Lee, S. Y. Yeo, and S. H. Jeong, J. Mater. Sci., 38, 2199 (2003).CrossRefGoogle Scholar
  36. 36.
    A. Timin and E. Rumyantsev, BioNanoScience, 3, 415 (2013).CrossRefGoogle Scholar
  37. 37.
    M. Montazer, A. Shamei, and F. Alimohammadi, Mater. Sci. Eng. C., 38, 170 (2014).CrossRefGoogle Scholar
  38. 38.
    Q. Shi, N. Vitchuli, J. Nowak, J. Noar, J. M. Caldwell, F. Breidt, M. Bourham, M. McCord, and X. Zhang, J. Mater. Chem., 21, 10330 (2011).CrossRefGoogle Scholar
  39. 39.
    S. H. Jeong, S. Y. Yeo, and S. C. Yi, J. Mater. Sci., 40, 5407 (2005).CrossRefGoogle Scholar
  40. 40.
    A. Majumdar, B. S. Butola, and S. Thakur, Mater. Sci. Eng. C., 54, 26 (2015).CrossRefGoogle Scholar
  41. 41.
    A. D. Erem, G. Ozcan, M. Skrifvars, and M. Cakmak, Fiber. Polym., 14, 1415 (2013).CrossRefGoogle Scholar
  42. 42.
    L. Lin, W. Gong, and S. Wang, J. Text. Inst., 102, 419 (2011).CrossRefGoogle Scholar
  43. 43.
    C. Chen, H. Zhang, X. X. Zhang, and X. C. Wang, J. Text. Inst., 101, 128 (2010).CrossRefGoogle Scholar
  44. 44.
    Q. Xu, Y. Wu, and Y. Zhang, Fiber. Polym., 17, 1782 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Nature B.V. 2018

Authors and Affiliations

  • Prakash Khude
    • 1
    Email author
  • Abhijit Majumdar
    • 1
  • Bhupendra Singh Butola
    • 1
  1. 1.Department of Textile TechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations