Fibers and Polymers

, Volume 19, Issue 3, pp 620–626 | Cite as

Manufacturing and Optimization the Nanofibres Tissue of Poly(N-vinyl-2-pyrrolidone) - Poly(e-caprolactone) Shell/Poly(N-vinyl-2-pyrrolidone)-Amphotericin B Core for Controlled Drug Release System

  • Fataneh Rouhollahi Vernosfaderani
  • Dariush Semnani
Article
  • 9 Downloads

Abstract

Controlled release of drugs is important to reduce the amount of medication in treatment of any diseases and improves life quality. Poly(e-caprolactone) (PCL) has a low biodegradation rate that is a disadvantage in the biomedical and pharmaceutical fields. Poly(N-vinyl-2-pyrrolidone) (PVP) is a water-soluble polymer that to overcome of PCL low biodegradation rate, electrospinning of PCL blended with PVP was used for shell of nanofibers with controllable degradation rates and drug release rates. Oral and vaginal mucosal infections mainly caused by candida albicans. It is usually a harmless commensal organism; however it is known as an opportunistic pathogen for almost immunologically week and immune compromised people. Amphotericin-B (AmB) is a strong polyene antifungal antibiotic that has a significantly efficacy on candida albicans. This study is manufactured and optimized the PVP-PCL shell/PVP-AmB core nanofiberous tissue by working distance and feed flow rate for controlled drug release. AmB with PVP was successfully inserted into the core. PVPPCL shell (50/50)/PVP-AmB core nanofiberous were electrospinning with two optimum distances working and two flow rates. The mechanical properties of coaxial nanofibers were analyzed by instron machine. Scanning electron microscopy and transmission electron microscopy was used for analysis morphology. Further, drug release test were done for coaxial nanofibers with AmB different morphologies. The effect of flow rate and working distance on morphology and mechanical properties were evaluated by statistical two-way analysis of the variance (ANOVA). The diameter averages of nanofibers were decreased significantly by increasing working distance. Moreover, the stress and strain were increased by increasing working distance. Coaxial nanofibers biodegradability rate and drug release of nanofibers were increased also by increasing working distance and flow rate of core. Nanofibers drug release mechanism was indicated by Korsmeyer-Peppas which they followed fick′s lows and Higuchi model significantly. Also, results presented that biodegradability and drug release rate accelerate with increasing the working distance and increasing the amount of PVP in core.

Keywords

Coaxial nanofibers Biodegradability Working distance Controlled drug release Poly(e-caprolactone) Poly(N-vinyl-2-pyrrolidone) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Li and Y. N. Xia, Adv. Mater., 16, 1151 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomater., 24, 2077 (2003).CrossRefGoogle Scholar
  3. 3.
    M. Carrabba, C. De Maria, A. Oikawa, C. Reni, I. Rodriguez-Arabaolaza, H. Spencer, S. Slater, E. Avolio, Z. Dang, G. Spinetti, P. Madeddu, and G. Vozzi, Biofabrication. doi:10.1088/1758-5090/8/1/015020 (2016).Google Scholar
  4. 4.
    A. Di Martino, L. Liverani, A. Rainer, G. Salvatore, M. Trombetta, and V. Denaro, Musculoskelet. Surg., 95, 69 (2011).CrossRefGoogle Scholar
  5. 5.
    J. A. Genovese, C. Spadaccio, A. Rainer, and E. Covino, “Electrospun Nanocomposites and Stem Cells in Cardiac Tissue Engineering” (A. R. Boccaccini and S. E. Harding Eds.), pp.215–242, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.Google Scholar
  6. 6.
    Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  7. 7.
    L. M. Bellan, “Properties and Applications of Electrospun Fibers”, pp.169–182, 2008.Google Scholar
  8. 8.
    Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005).CrossRefGoogle Scholar
  9. 9.
    R. Langer and J. P. Vacanti, Tissue Eng., 260, 920 (1993).Google Scholar
  10. 10.
    I. O. Smith, X. H. Liu, and L. A. Smith, and P. X. Ma, Nanomed. Nanobiotechnol., 1, 226 (2009).CrossRefGoogle Scholar
  11. 11.
    X. Liu, T. Lin, J. Fang, G. Yao, H. Zhao, M. Dodson, and X. Wang, J. Biomed. Mater. Res. -Part A., 94, 499 (2010).Google Scholar
  12. 12.
    H. Peng, S. Zhou, T. Guo, Y. Li, X. Li, J. Wang, and J. Weng, Colloids Surf., B., 66, 206 (2008).CrossRefGoogle Scholar
  13. 13.
    C. L. He, Z. M. Huang, and X. J. Han, J. Biomed. Mater. Res. A, 89, 80 (2009).CrossRefGoogle Scholar
  14. 14.
    Z. M. Huang, C. L. He, A. Yang, Y. Zhang, X. J. Han, J. Yin, and Q. Wu, J. Biomed. Mater. Res. A, 77, 169 (2006).CrossRefGoogle Scholar
  15. 15.
    W. Ji, F. Yang, J. J. J. P. van den Beucken, Z. Bian, M. Fan, Z. Chen, and J. A. Jansen, Acta Biomater., 6, 4199 (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Lu, H. Jiang, K. Tu, and L. Wang, Acta Biomater, 5, 1562 (2009).CrossRefGoogle Scholar
  17. 17.
    T. T. Ruckh, K. Kumar, M. J. Kipper, and K. C. Popat, Acta Biomater., 6, 2949 (2010).CrossRefGoogle Scholar
  18. 18.
    V. Chiono, G. Vozzi, F. Vozzi, C. Salvadori, F. Dini, F. Carlucci, M. Arispici, S. Burchielli, F. D. Scipio, S. Geuna, M. Fornaro, P. Tos, S. Nicolino, C. Audisio, I. Perroteau, A. Chiaravalloti, C. Domenici, P. Giusti, and G. Ciardelli, Biomed Microdevices, 11, 1037 (2009).CrossRefGoogle Scholar
  19. 19.
    F. Gattazzo, C. De Maria, Y. Whulanza, G. Taverni, A. Ahluwalia, and G. Vozi, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1107 (2014).CrossRefGoogle Scholar
  20. 20.
    Q. Yang, L. I. Zhenyu, Y. Hong, Y. Zhao, S. Qiu, C. E. Wang, and Y. Wei, J. Polym. Sci. Part B Polym. Phys., 42, 3721 (2004).CrossRefGoogle Scholar
  21. 21.
    S. Suganya, T. S. Ram, B. S. Lakshmi, and V. R. Giridev, J. Appl. Polym. Sci., 121, 2893 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. T. Jia, X. Y. Zhu, and Q. Q. Liu, Mater. Res., 332-334, 1330 (2011).Google Scholar
  23. 23.
    J. Kim and P. Sudbery, J. Microbiol., 49, 171 (2011).CrossRefGoogle Scholar
  24. 24.
    G. Ramage, S. P. Saville, D. P. Thomas, and J. L. López-Ribot, Eukaryotic Cell, 4, 633 (2005).CrossRefGoogle Scholar
  25. 25.
    T. J. Pallasch, Periodontal 2000, 28, 240 (2002).CrossRefGoogle Scholar
  26. 26.
    L. P. Samaranayake, L. K. Cheung, and Y. H. Samaranayake, Dermatol. Ther., 15, 251 (2002).CrossRefGoogle Scholar
  27. 27.
    A. A. Chavez-Dozal, M. Jahng, H. Rane, K. Asare, V. Kulkarny, S. M. Bernardo, and S. A. Lee, Int. J. Antimicrob. Agents. 43, 86 (2014).CrossRefGoogle Scholar
  28. 28.
    G. M. Kim, K. H. T. Le, S. M. Giannitelli, and Y. J. Lee, J. Mater. Sci.: Mater. Med., 24, 1425 (2013).Google Scholar
  29. 29.
    V. Chiono, G. Vozzi, M. D’Acunto, S. Brinzi, C. Domenici, F. Vozzi, A. Ahluwalia, N. Barbani, P. Giusti, and G. Ciardelli, Master. Sci. Eng. C., 29, 2174 (2009).CrossRefGoogle Scholar
  30. 30.
    G. Ciardelli, V. Chiono, G. Vozzi, and M. Pracella, A. Ahluwalia, N. Barbani, C. Cristallini, and P. Giusti, Biomacromolecules, 6, 1961 (2005).CrossRefGoogle Scholar
  31. 31.
    G. Kister, G. Cassanas, M. Bergounhon, D. Hoarau, and M. Vert, Polymer, 41, 925 (2000).CrossRefGoogle Scholar
  32. 32.
    M. B. Clark, J. C. A. Burkhardt, and J. A. Gardella, Macromolecules, 24, 799 (1991).CrossRefGoogle Scholar
  33. 33.
    L. C. Mendes, R. C. Rodrigues, and E. P. Silva, J. Therm. Anal. Calorim., 101, 899 (2010).CrossRefGoogle Scholar
  34. 34.
    B. T. AL-Quadeib, M. A. Radwan, L. Siller, B. Horrocks, and M. C. Wright, Saudi Pharm. J., 23, 290 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Fataneh Rouhollahi Vernosfaderani
    • 1
  • Dariush Semnani
    • 1
  1. 1.Department of Textile EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations