Fibers and Polymers

, Volume 19, Issue 3, pp 648–659 | Cite as

Surface Treated Jute Fiber Induced Foam Microstructure Development in Poly(lactic acid)/Jute Fiber Biocomposites and their Biodegradation Behavior

  • Mohammad Tahir Zafar
  • Sanjeev Kumar
  • Rajendra Kumar Singla
  • Saurindra Nath Maiti
  • Anup Kumar Ghosh
Article
  • 18 Downloads

Abstract

Poly(lactic acid) (PLA)/jute fiber biocomposites with: i) untreated jute fiber, ii) NaOH treated jute fiber, and iii) (NaOH+silane) treated jute fibers were prepared by melt extrusion process. Microcellular foaming of the injection molded samples was carried out by using single stage batch process. The effects of jute fiber content as well as that of matrix-fiber phase adhesion, in composites with surface treated jute fibers, on the foam microstructure were studied. Further, water absorption, thickness swelling, and biodegradation behavior of the foamed biocomposites were studied and correlated with their foam microstructures. It was observed that on increasing jute fiber content in PLA/JFU biocomposites, cell density increased from 6.5×107 to 8.1×107, while the cell size and expansion ratio decreased from 40 to 23 μm and 2.41 to 1.45, respectively. Again, on increasing the extent of the jute fiber surface treatment in the biocomposites, cell size and expansion ratio increased from 40 to 78 μm and 2.41 to 2.80 respectively. This study also revealed that the rate of biodegradation accelerated with increase in the jute fiber content in the biocomposites while the same retarded with increase in the extent of jute fiber surface treatment.

Keywords

Poly(lactic acid) Jute fibers Surface treatment Biocomposites Microcellular foaming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-M. Lai, R.-C. Hsu, C.-Y. Hsieh, and F.-C. Chiu, J. Mater. Sci., 50, 2272 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Zhao, Z. Cui, X. Wang, L.-S. Turng, and X. Peng, Compos. Pt. B-Eng., 51, 79 (2013).CrossRefGoogle Scholar
  3. 3.
    L. M. Matuana, Bioresour. Technol., 99, 3643 (2008).CrossRefGoogle Scholar
  4. 4.
    L. M. Matuana and C. A. Diaz, Ind. Eng. Chem. Res., 49, 2186 (2010).CrossRefGoogle Scholar
  5. 5.
    S. A. Hinchcliffe, K. M. Hess, and W. V. Srubar, Compos. Pt. B-Eng., 95, 346 (2016).CrossRefGoogle Scholar
  6. 6.
    B. Jeon, H. K. Kim, S. W. Cha, S. J. Lee, M.-S. Han, and K. S. Lee, Int. J. Precis. Eng. Man., 14, 679 (2013).CrossRefGoogle Scholar
  7. 7.
    L. J. M. Jacobs, M. F. Kemmere, and J. T. F. Keurentjes, Green Chem., 10, 731 (2008).CrossRefGoogle Scholar
  8. 8.
    D. Sanli, S. Bozbag, and C. Erkey, J. Mater. Sci., 47, 2995 (2012).CrossRefGoogle Scholar
  9. 9.
    L. Chen, D. Rende, L. S. Schadler, and R. Ozisik, J. Mater. Chem. A, 1, 3837 (2013).CrossRefGoogle Scholar
  10. 10.
    C.-C. Kuo, L.-C. Liu, W.-C. Liang, H.-C. Liu, and C.-M. Chen, Compos. Pt. B-Eng., 79, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    C. Zhou, P. Wang, and W. Li, Compos. Pt. B-Eng., 42, 318 (2011).CrossRefGoogle Scholar
  12. 12.
    S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1148 (1994).CrossRefGoogle Scholar
  13. 13.
    J. Wang, Q. Ren, W. Zheng, and W. Zhai, Ind. Eng. Chem. Res., 53, 1422 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Mizoguchi, T. Hirose, Y. Naito, and Y. Kamiya, Polymer, 28, 1298 (1987).CrossRefGoogle Scholar
  15. 15.
    Y. Chang and Q. Xu, Chem. Lett., 1008 (2002).Google Scholar
  16. 16.
    Q. Xu, Y. Chang, J. He, B. Han, and Y. Liu, Polymer, 44, 5449 (2003).CrossRefGoogle Scholar
  17. 17.
    L.-Q. Xu and H.-X. Huang, Ind. Eng. Chem. Res., 53, 2277 (2014).CrossRefGoogle Scholar
  18. 18.
    H. Jameel, J. Waldman, and L. Rebenfeld, J. Appl. Polym. Sci., 26, 1795 (1981).CrossRefGoogle Scholar
  19. 19.
    P. Makarewicz and G. Wilkes, J. Polym. Sci. Polym. Phys. Ed., 16, 1559 (1978).CrossRefGoogle Scholar
  20. 20.
    Q. Xu, Q. Peng, W. Ni, Z. Hou, J. Li, and L. Yu, J. Appl. Polym. Sci., 100, 2901 (2006).CrossRefGoogle Scholar
  21. 21.
    D. J. Kang, D. Xu, Z. X. Zhang, K. Pal, D. S. Bang, and J. K. Kim, Macromol. Mater. Eng., 294, 620 (2009).CrossRefGoogle Scholar
  22. 22.
    L. M. Matuana and O. Faruk, eXPRESS Polym. Lett., 4, 621 (2010).CrossRefGoogle Scholar
  23. 23.
    S. Pilla, A. Kramschuster, J. Lee, G. K. Auer, S. Gong, and L.-S. Turng, Compos. Interfaces, 16, 869 (2009).CrossRefGoogle Scholar
  24. 24.
    A. Hao, Y. Geng, Q. Xu, Z. Lu, and L. Yu, J. Appl. Polym. Sci., 109, 2679 (2008).CrossRefGoogle Scholar
  25. 25.
    C. I. Boissard, P.-E. Bourban, C. J. G. Plummer, R. C. Neagu, and J.-A. E. Månson, J. Cell. Plast., 48, 445 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Zafar, N. Zarrinbakhsh, A. Mohanty, M. Misra, S. Maiti, and A. Ghosh, eXPRESS Polym. Lett., 10, 176 (2016).CrossRefGoogle Scholar
  27. 27.
    J. Dlouha, L. Suryanegara, and H. Yano, Soft Matter, 8, 8704 (2012).CrossRefGoogle Scholar
  28. 28.
    Y. Yang, T. Ota, T. Morii, and H. Hamada, J. Mater. Sci., 46, 2678 (2011).CrossRefGoogle Scholar
  29. 29.
    E. Sinha and S. Rout, J. Mater. Sci., 43, 2590 (2008).CrossRefGoogle Scholar
  30. 30.
    N. Reddy, D. Nama, and Y. Yang, Polym. Degrad. Stab., 93, 233 (2008).CrossRefGoogle Scholar
  31. 31.
    M. T. Zafar, S. N. Maiti, and A. K. Ghosh, Fiber. Polym., 17, 266 (2016).CrossRefGoogle Scholar
  32. 32.
    M. T. Zafar, S. N. Maiti, and A. K. Ghosh, RSC Adv., 6, 73373 (2016).CrossRefGoogle Scholar
  33. 33.
    H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 3, 918 (2011).CrossRefGoogle Scholar
  34. 34.
    L. M. Matuana and C. A. Diaz, Ind. Eng. Chem. Res., 52, 12032 (2013).CrossRefGoogle Scholar
  35. 35.
    D. Kohlhoff and M. Ohshima, Macromol. Mater. Eng., 296, 770 (2011).CrossRefGoogle Scholar
  36. 36.
    S.-S. Hwang, P. P. Hsu, J.-M. Yeh, K.-C. Chang, and Y.-Z. Lai, Polym. Compos., 30, 1625 (2009).CrossRefGoogle Scholar
  37. 37.
    H. Zhao, G. Zhao, L.-S. Turng, and X. Peng, Ind. Eng. Chem. Res., 54, 7122 (2015).CrossRefGoogle Scholar
  38. 38.
    T. Tábi, A. Z. Égerházi, P. Tamás, T. Czigány, and J. G. Kovács, Compos. Pt. A-Appl. Sci. Manuf., 64, 99 (2014).CrossRefGoogle Scholar
  39. 39.
    D. Battegazzore, S. Bocchini, and A. Frache, eXPRESS Polym. Lett., 5, 849 (2011).CrossRefGoogle Scholar
  40. 40.
    A. Yussuf, I. Massoumi, and A. Hassan, J. Polym. Environ., 18, 422 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Wang, W. Zhu, H. Zhang, and C. B. Park, Chem. Eng. Sci., 75, 390 (2012).CrossRefGoogle Scholar
  42. 42.
    M. Takada, S. Hasegawa, and M. Ohshima, Polym. Eng. Sci., 44, 186 (2004).CrossRefGoogle Scholar
  43. 43.
    L. M. Matuana, C. B. Park, and J. J. Balatinecz, Polym. Eng. Sci., 37, 1137 (1997).CrossRefGoogle Scholar
  44. 44.
    Q. Li and L. M. Matuana, J. Appl. Polym. Sci., 88, 3139 (2003).CrossRefGoogle Scholar
  45. 45.
    F. Mengeloglu and L. M. Matuana, J. Vinyl Add. Tech., 7, 142 (2001).CrossRefGoogle Scholar
  46. 46.
    L. M. Matuana and F. Mengeloglu, J. Vinyl Add. Tech., 8, 264 (2002).CrossRefGoogle Scholar
  47. 47.
    L. Matuana-Malanda, C. B. Park, and J. J. Balatinecz, J. Cell. Plast., 32, 449 (1996).CrossRefGoogle Scholar
  48. 48.
    F. Sarasini, J. Tirill, D. Puglia, J. M. Kenny, F. Dominici, C. Santulli, M. Tofani, and R. De Santis, RSC Adv., 5, 23798 (2015).CrossRefGoogle Scholar
  49. 49.
    M. Thwe and K. Liao, J. Mater. Sci., 38, 363 (2003).CrossRefGoogle Scholar
  50. 50.
    H. Zou, L. Wang, H. Gan, and C. Yi, Polym. Compos., 33, 1659 (2012).CrossRefGoogle Scholar
  51. 51.
    B. Singh, M. Gupta, and A. Verma, Polym. Compos., 17, 910 (1996).CrossRefGoogle Scholar
  52. 52.
    S. Ochi, Mech. Mater., 40, 446 (2008).CrossRefGoogle Scholar
  53. 53.
    T. Ohkita and S. H. Lee, J. Appl. Polym. Sci., 100, 3009 (2006).CrossRefGoogle Scholar
  54. 54.
    T. Bayerl, M. Geith, A. A. Somashekar, and D. Bhattacharyya, Int. Biodeterior. Biodegrad., 96, 18 (2014).CrossRefGoogle Scholar
  55. 55.
    E. Petinakis, X. Liu, L. Yu, C. Way, P. Sangwan, K. Dean, S. Bateman, and G. Edward, Polym. Degrad. Stab., 95, 1704 (2010).CrossRefGoogle Scholar
  56. 56.
    R. Neppalli, V. Causin, C. Marega, M. Modesti, R. Adhikari, S. Scholtyssek, S. S. Ray, and A. Marigo, Appl. Clay Sci., 87, 278 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Tahir Zafar
    • 1
  • Sanjeev Kumar
    • 1
    • 2
  • Rajendra Kumar Singla
    • 1
  • Saurindra Nath Maiti
    • 1
  • Anup Kumar Ghosh
    • 1
  1. 1.Centre for Polymer Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of ChemistryLajpat Rai College SahibabadGhaziabadIndia

Personalised recommendations