Advertisement

Correction to: A Polyakov Formula for Sectors

  • Clara L. Aldana
  • Julie RowlettEmail author
Correction
  • 48 Downloads

1 Correction to: J Geom Anal (2018) 28:1773–1839  https://doi.org/10.1007/s12220-017-9888-y

Let \(S_\alpha \) denote a finite circular sector of opening angle \(\alpha \in (0,\pi )\) and radius one, and let \(e^{-t \Delta _\alpha }\) denote the heat operator associated to the Dirichlet extension of the Laplacian. Based on recent joint work [2] and [3], we discovered an extra contribution to the variational Polyakov formula in [1] coming from the curved boundary component of the sector. Theorems 3 and 4 of [1] should have an added term \(+\frac{1}{4\pi }\). This calculation will appear in [2]. The corrected statements of these theorems are given below.

Theorem 1

(Theorem 3 [1]) Let \(S_{\pi /2}\subset {\mathbb {R}}^2\) be a circular sector of opening angle \(\pi /2\) and radius one. Then the variational Polyakov formula is
$$\begin{aligned} \left. \frac{\partial }{\partial \gamma } \big (-\log (\det (\Delta _{S_\gamma }))\big )\right| _{\gamma =\pi /2} = \frac{-\gamma _e}{4\pi } + \frac{2}{3 \pi }, \end{aligned}$$
where \(\gamma _e\) is the Euler-Mascheroni constant.

Theorem 2

(Theorem 4 [1]) Let \(0<\alpha < \pi \), and let
$$\begin{aligned} k_{min} = \left\lceil { \frac{-\pi }{2\alpha } }\right\rceil , \text { and } k_{max} = \left\lfloor {\frac{\pi }{2\alpha }}\right\rfloor \text { if } \frac{\pi }{2\alpha } \not \in {\mathbb {Z}}, \text { otherwise } k_{max} = \frac{\pi }{2\alpha } - 1, \end{aligned}$$
and \(W_{\alpha } =\left\{ k \in \left( {\mathbb {Z}}\bigcap \left[ k_{min}, k_{max}\right] \right) {\setminus } \left\{ \frac{\ell \pi }{\alpha } \right\} _{\ell \in {\mathbb {Z}}} \right\} .\) Then
$$\begin{aligned} {{\mathcal {S}}}(\alpha )&:=\frac{\partial }{\partial \gamma } \left. \big (-\log (\det (\Delta _{\gamma }))\big )\right| _{\gamma =\alpha } = \frac{1}{3\pi } + \frac{\pi }{12\alpha ^2} \\&\quad + \sum _{k\in W_{\alpha }} \frac{-2\gamma _e + \log (2) - \log \left( {1-\cos (2k\alpha )}\right) }{4 \pi (1-\cos (2k\alpha ))} \\&\quad - (1-\delta _{\alpha , \frac{\pi }{n}})\ \frac{2}{\alpha } \sin (\pi ^2/\alpha ) \int _{-\infty } ^\infty \frac{\gamma _e + \log (2) - \log (1+\cosh (s))}{16\pi (1+\cosh (s))(\cosh (\pi s /\alpha ) - \cos (\pi ^2/\alpha ))} ds, \end{aligned}$$
where \(n\in {\mathbb {N}}\) is arbitrary and \(\delta _{\alpha , \frac{\pi }{n}}\) denotes the Kronecker delta.
It therefore follows that the list of examples given following Theorem 4 in [1] should be revised accordingly:
  1. (1)

    \(\alpha =\frac{\pi }{4}\), \(W_{\frac{\pi }{4}}= \{-2,\pm 1,\}\), \({{\mathcal {S}}}(\frac{\pi }{4})= \frac{-5\gamma _e}{4\pi } + \frac{\log (2)}{2\pi }+ \frac{5}{3\pi } \sim 0.411167\)

     
  2. (2)

    \(\alpha =\frac{\pi }{3}\), \(W_{\frac{\pi }{3}}= \{-1,1\}\), \({{\mathcal {S}}}(\frac{\pi }{3})= \frac{13}{12\pi } - \frac{2\gamma _e}{3\pi } + \frac{\log (4/3)}{3\pi } \sim 0.252871\)

     
  3. (3)

    \(\alpha =\frac{\pi }{2}\), \(W_{\frac{\pi }{2}}=\{-1\}\), \({{\mathcal {S}}}(\frac{\pi }{2})= \frac{-\gamma _e}{4\pi } + \frac{2}{3\pi } \sim 0.166273\).

     
  4. (4)

    For \(\alpha \in ]\frac{\pi }{2},\pi [\), \(W_{\alpha }=\emptyset \), but \(\sin (\pi ^2/\alpha )\ne 0\). If \(\alpha =\frac{2\pi }{3}\), the integral converges rapidly, and a numerical computation gives an approximate value of 0.0075015. Hence \({{\mathcal {S}}}(\frac{2\pi }{3}) \sim \frac{1}{3\pi } + \frac{3}{16 \pi } + \frac{3}{\pi } (0.0075015) \sim 0.1729498\).

     

2 Misprint

There is a two missing in Equation (1.3) of [1]. That equation should be:
$$\begin{aligned} \partial _t \log \det (\Delta _{g_t}) = {-\frac{1}{12\pi }} \int _{M} \sigma '(t) \ \text {Scal}_t \ dA_{g_t} + \partial _t \log \text {Area}(M,g_t). \end{aligned}$$

Notes

Acknowledgements

We thank Klaus Kirsten and Alexander Strohmaier who separately helped us find the mistake in our formula. The first author acknowledges the hospitality of the Max Planck Institute for Mathematics in Bonn during a visit in when then missing term was found. The second author is supported by the National Science Foundation Grant DMS-1440140 during the fall 2019 semester at MSRI and by the Swedish Research Council Grant 2018-03873.

References

  1. 1.
    Aldana, C.L., Rowlett, J.: A Polyakov formula for sectors. J. Geom. Anal. 28(2), 1773–1839 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aldana, C.L., Kirsten, K., Rowlett, J.: A Polyakov formula for surfaces with conical singularities and boundary, pre-printGoogle Scholar
  3. 3.
    Nursultanov, M., Rowlett, J., Sher, D.: The heat kernel on curvilinear polygonal domains in surfaces, arXiv:1905.00259

Copyright information

© Th Author(s) 2019

Authors and Affiliations

  1. 1.Mathematics Research UnitUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Department of MathematicsChalmers University of Technology and the University of GothenburgGöteborgSweden

Personalised recommendations