Advertisement

Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation

  • Songbai Wang
  • Dachun YangEmail author
  • Wen Yuan
  • Yangyang Zhang
Article
  • 12 Downloads

Abstract

Let X be a ball quasi-Banach function space on \({\mathbb R}^n\). In this article, assuming that the powered Hardy–Littlewood maximal operator satisfies some Fefferman–Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space, the authors establish various Littlewood–Paley function characterizations of \(WH_X({{\mathbb {R}}}^n)\) under some weak assumptions on the Littlewood–Paley functions. The authors also prove that the real interpolation intermediate space \((H_{X}({{\mathbb {R}}}^n),L^\infty ({{\mathbb {R}}}^n))_{\theta ,\infty }\), between the Hardy space associated with X, \(H_{X}({{\mathbb {R}}}^n)\), and the Lebesgue space \(L^\infty ({\mathbb R}^n)\), is \(WH_{X^{{1}/{(1-\theta )}}}({{\mathbb {R}}}^n)\), where \(\theta \in (0, 1)\). All these results are of wide applications. Particularly, when \(X:=M_q^p({{\mathbb {R}}}^n)\) (the Morrey space), \(X:=L^{\vec {p}}({{\mathbb {R}}}^n)\) (the mixed-norm Lebesgue space) and \(X:=(E_\Phi ^q)_t({{\mathbb {R}}}^n)\) (the Orlicz-slice space), all these results are even new; when \(X:=L_\omega ^\Phi ({\mathbb R}^n)\) (the weighted Orlicz space), the result on the real interpolation is new and, when \(X:=L^{p(\cdot )}({{\mathbb {R}}}^n)\) (the variable Lebesgue space) and \(X:=L_\omega ^\Phi ({{\mathbb {R}}}^n)\), the Littlewood–Paley function characterizations of \(WH_X({{\mathbb {R}}}^n)\) obtained in this article improves the existing results via weakening the assumptions on the Littlewood–Paley functions.

Keywords

Ball quasi-Banach function space Weak Hardy space Weak tent space Orlicz-slice space Maximal function Littlewood–Paley function Real interpolation 

Mathematics Subject Classification

Primary 42B30 Secondary 42B25 42B20 42B35 46E30 

Notes

Acknowledgements

The authors would like to thank Professor Sibei Yang for many discussions on the subject of this article. They would also like to thank the referees for their carefully reading and so many motivating and useful comments which indeed improve the quality of this article.

References

  1. 1.
    Abu-Shammala, W., Torchinsky, A.: The Hardy–Lorentz spaces \(H^{p, q}({{\mathbb{R}}^n})\). Stud. Math. 182, 283–294 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116, 5–22 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Adams, D.R.: Morrey Spaces. Birkhäuser/Springer, Cham (2015)zbMATHCrossRefGoogle Scholar
  4. 4.
    Adams, D.R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53, 1629–1663 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Alvarez, J., Milman, M.: \(H^p\) continuity properties of Calderón–Zygmund-type operators. J. Math. Anal. Appl. 118, 63–79 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Andersen, K.F., John, R.T.: Weighted inequalities for vector-valued maximal functions and singular integrals. Stud. Math. 69, 19–31 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Auscher, P.: Change of angle in tent spaces. C. R. Math. Acad. Sci. Paris 349, 297–301 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Auscher, P., Mourgoglou, M.: Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35, 241–315 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Auscher, P., Prisuelos-Arribas, C.: Tent space boundedness via extrapolation. Math. Z. 286, 1575–1604 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bennett, C., Sharpley, R.: Interpolation of Operators, Pure Appl. Math, vol. 129. Academic Press, Boston, MA (1988)zbMATHGoogle Scholar
  12. 12.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)zbMATHGoogle Scholar
  13. 13.
    Bonami, A., Feuto, J.: Products of functions in Hardy and Lipschitz or BMO spaces. In: Recent Developments in Real and Harmonic Analysis, pp. 57-71. Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA (2010)Google Scholar
  14. 14.
    Bownik, A.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164(781), 122 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Calderón, A.P.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cao, J., Chang, D.-C., Yang, D., Yang, S.: Boundedness of fractional integrals on weighted Orlicz–Hardy spaces. Math. Methods Appl. Sci. 36, 2069–2085 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, Y.Z., Lau, K.S.: Some new classes of Hardy spaces. J. Funct. Anal. 84, 255–278 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7, 273–279 (1987)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces, In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, vol. 693, pp. 167–184. Contemp. Math. Am. Math. Soc. Providence, RI (2017)Google Scholar
  21. 21.
    Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Coifman, R.R.: A real variable characterization of \(H^p\). Stud. Math. 51, 269–274 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Space, Foundations and Harmonic Analysis, Appl. Number. Harmon Aanl., Birkhäuser/Springer, Heidelberg (2013)Google Scholar
  25. 25.
    Cruz-Uribe, D.V., Wang, L.A.D.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Cwikel, M., Gulisashvili, A.: Interpolation on families of characteristic functions. Stud. Math. 138, 209–224 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    de Ablé, Z.V.P., Feuto, J.: Atomic decomposition of Hardy-amalgam spaces. J. Math. Anal. Appl 455, 1899–1936 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smmothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Fefferman, R., Soria, F.: The space weak \(H^1\). Stud. Math. 85, 1–16 (1986)zbMATHCrossRefGoogle Scholar
  30. 30.
    Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Fefferman, C., Rivière, N.M., Sagher, Y.: Interpolation between \(H^p\) spaces: the real method. Trans. Am. Math. Soc. 191, 75–81 (1974)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups, Math. Notes, vol. 28. Princeton University Press, Princeton (1982)zbMATHGoogle Scholar
  33. 33.
    García-Cuerva, J.: Hardy spaces and Beurling algebras. J. Lond. Math. Soc. (2) 39, 499–513 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    García-Cuerva, J., Herrero, M.J.L.: A theory of Hardy spaces associated to Herz spaces. Proc. Lond. Math. Soc. (3) 69, 605–628 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Grafakos, L.: Classical Fourier Analysis, Grad. Texts in Math, vol. 249, 3rd edn. Springer, New York (2014)Google Scholar
  37. 37.
    Grafakos, L.: Modern Fourier Analysis, Grad. Texts in Math, vol. 250, 3rd edn. Springer, New York (2014)Google Scholar
  38. 38.
    Grafakos, L., He, D.: Weak Hardy spaces. In: Some Topics in Harmonic Analysis and Applications, Adv. Lect. Math. (ALM), vol. 34, pp. 177–202. Higher Education Press and International Press, Beijing, MA (2015)Google Scholar
  39. 39.
    He, D.: Square function characterization of weak Hardy spaces. J. Fourier Anal. Appl. 20, 1083–1110 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Ho, K.-P.: Atomic decompositions of weighted Hardy–Morrey spaces. Hokkaido Math. J. 42, 131–157 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Ho, K.-P.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Ho, K.-P.: Atomic decompositions and Hardy’s inequality on weak Hardy–Morrey spaces. Sci. China Math. 60, 449–468 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Ho, K.-P.: Atomic decompositions of weighted Hardy spaces with variable exponents. Tohoku Math. J. (2) 69, 383–413 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Ho, K.-P.: Sublinear operators on weighted Hardy spaces with variable exponents. Forum Math. 31, 607–617 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15(6), 37 (2013). 1350029MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Huang, L., Liu, J., Yang, D., Yuan, W.: Atomic and Littlewood–Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J. Geom. Anal. 29, 1991–2067 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Huang, L., Liu, J., Yang, D., Yuan, W.: Dual spaces of anisotropic mixed-norm Hardy spaces. Proc. Am. Math. Soc. 147, 1201–1215 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Huang, L., Yang, D.: On function spaces with mixed norms—a survey. arXiv:1908.03291
  50. 50.
    Iwaniec, T., Verde, A.: A study of Jacobians in Hardy–Orlicz spaces. Proc. R. Soc. Edinburgh Sect. A 129, 539–570 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Jia, H., Wang, H.: Decomposition of Hardy–Morrey spaces. J. Math. Anal. Appl. 354, 99–110 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938–954 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41(116), 592–618 (1991)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. Integr. Equ. Oper. Theory 78, 115–150 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Latter, R.H.: A characterization of \(H^p({{\mathbb{R}}^n})\) in terms of atoms. Stud. Math. 62, 93–101 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Liang, Y., Yang, D., Jiang, R.: Weak Musielak–Orlicz Hardy spaces and applications. Math. Nachr. 289, 634–677 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II. Function Spaces, Ergeb. Math. Grenzgeb, vol. 97. Springer, Berlin (1979)zbMATHCrossRefGoogle Scholar
  59. 59.
    Liu, H.: The weak \(H^p\) spaces on homogeneous groups. In: Harmonic Analysis, Tianjin, 1988, Lecture Notes in Math, vol. 1494, pp. 113-118. Springer, Berlin (1991)CrossRefGoogle Scholar
  60. 60.
    Lizorkin, P.I.: Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Appl. Izv. Akad. Nauk SSSR Ser. Mat. 34, 218–247 (1970)MathSciNetGoogle Scholar
  61. 61.
    Lu, S., Yang, D.: The local versions of \(H^p({{\mathbb{R}}^n})\) spaces at the origin. Stud. Math. 116, 103–131 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Lu, S., Yang, D.: The Weighted Herz-Type Hardy Spaces and its Applications. Sciece Press, Beijing (2008)Google Scholar
  63. 63.
    Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Nakai, E., Sawano, Y.: Hardy spaces with variable expoments and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Nakai, E., Sawano, Y.: Orlicz–Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950)zbMATHGoogle Scholar
  67. 67.
    Nakano, H.: Topology of Linear Topological Spaces. Maruzen, Tokyo (1951)Google Scholar
  68. 68.
    Nogayama, T.: Mixed Morrey spaces. Positivity 23, 961–1000 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Quek, T.S., Yang, D.: Calderón–Zygmund-type operators on weighted weak Hardy spaces over \({\mathbb{R}}^{n}\). Acta Math. Sin. (Engl. Ser.) 16, 141–160 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics 146. Marcel Dekker Inc, New York (1991)Google Scholar
  71. 71.
    Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Sawano, Y.: Theory of Besov Spaces, Developments in Mathematics 56. Springer, Singapore (2018)CrossRefGoogle Scholar
  73. 73.
    Sawano, Y., Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin. (Engl. Ser.) 21, 1535–1544 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Diss. Math. (Rozprawy Mat.) 525, 1–102 (2017)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Serra, C.F.: Molecular characterization of Hardy–Orlicz spaces. Rev. Un. Math. Argentia 40, 203–217 (1996)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables, I: the theory of \(H^p\) spaces. Acta Math. 103, 25–62 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Ullrich, T.: Continuous characterization of Besov-Lizorkin-Triebel space and new interpretations as coorbits. J. Funct. Spaces Appl. 2012(163213), 47 (2012)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Viviani, B.E.: An atomic decomposition of the predual of \(BMO(\rho )\). Rev. Mat. Ibero. 3, 401–425 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Wang, H., Liu, Z.: The Herz-type Hardy spaces with variable exponent and their applications. Taiwan. J. Math. 16, 1363–1389 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Wang, F., Yang, D., Yang, S.: Applications of Hardy spaces associated with ball quasi-Banach function spaces. arXiv: 1901.05600
  83. 83.
    Xu, J., Yang, X.: Herz–Morrey–Hardy spaces with variable exponents and their applications. J. Funct. Spaces 2015(160635), 19 (2015)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Yan, X., Yang, D., Yuan, W., Zhuo, C.: Variable weak Hardy spaces and their applications. J. Funct. Anal. 271, 2822–2887 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Yang, D., Yang, S.: Weighted local Orlicz Hardy spaces with applications to pseudo-differential operators. Diss. Math. (Rozprawy Mat.) 478, 1–78 (2011)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Yang, D., Yang, S.: Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of \({{\mathbb{R}}^n}\). Indiana Univ. Math. J. 61, 81–129 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Yang, D., Zhuo, C., Nakai, E.: Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Comput. 29, 245–270 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, vol. 2182. Springer, New York (2017)zbMATHCrossRefGoogle Scholar
  89. 89.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Math, vol. 2005. Springer, Berlin (2010)Google Scholar
  90. 90.
    Zhang, Y., Yang, D., Yuan, W., Wang, S.: Real-variable characterizations of Orlicz-slice Hardy spaces. Anal. Appl. (Singap.) 17, 597–664 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Zhang, Y., Wang, S., Yang, D., Yuan, W.: Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón–Zygmund operators. arXiv: 1905.02097
  92. 92.
    Zhou, Y.: Boundedness of sublinear operators in Herz-type Hardy spaces. Taiwan. J. Math. 13, 983–996 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Zhuo, C., Yang, D., Yuan, W.: Interpolation between \(H^{p(\cdot )}({{\mathbb{R}}^n})\) and \(L^\infty ({{\mathbb{R}}^n})\): real method. J. Geom. Anal. 28, 2288–2311 (2018)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsHubei Normal UniversityHuangshiPeople’s Republic of China
  2. 2.Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations