Advertisement

Singular Solutions of Elliptic Equations with Iterated Exponentials

  • Marius GherguEmail author
  • Olivier Goubet
Article
  • 13 Downloads

Abstract

We construct positive singular solutions for the problem \(-\Delta u=\lambda \exp (e^u)\) in \(B_1\subset {\mathbb {R}}^n\) (\(n\ge 3\)), \(u=0\) on \(\partial B_1\), having a prescribed behaviour around the origin. Our study extends the one in Miyamoto (J Differ Equ 264:2684–2707, 2018) for such nonlinearities. Our approach is then carried out to elliptic equations featuring iterated exponentials.

Keywords

Singular solutions Prescribed singularity Iterated exponentials 

Mathematics Subject Classification

Primary 35J61 35J75 Secondary 35B40 

Notes

References

  1. 1.
    Arioli, G., Gazzola, F., Grunau, H.-C., Mitidieri, E.: A semilinear fourth order elliptic problem with exponential nonlinearity. SIAM J. Math. Anal. 36, 1226–1258 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arioli, G., Gazzola, F., Grunau, H.-C.: Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity. J. Differ. Equ. 230, 743–770 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Azorero, J.G., Alonso, I.P., Puel, J.P.: Quasilinear problems with exponential growth in the reaction term. Nonlinear Anal. 22, 481–498 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berchio, E., Gazzola, F., Mitidieri, E.: Positivity preserving property for a class of biharmonic problems. J. Differ. Equ. 229, 1–23 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dávila, J., Dupaigne, L.: Perturbing singular solutions of the Gelfand problem. Commun. Contemp. Math. 9, 639–680 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dávila, J., Goubet, O.: Partial regularity for a Liouville system. Discret. Cont. Dyn. Syst. A 34, 2495–2503 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dupaigne, L.: Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Boca Raton (2011)CrossRefGoogle Scholar
  8. 8.
    Dupaigne, L., Ghergu, M., Goubet, O., Warnault, G.: The Gel’fand problem for the biharmonic operator. Arch. Ration. Mech. Anal. 208, 725–752 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goubet, O.: Regularity of extremal solutions of a Liouville system. Discret. Cont. Dyn. Syst. A 12, 339–345 (2019)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Goubet, O., Labrunie, S.: The Dirichlet problem for \(-\Delta \varphi = e^{-\varphi }\) in an infinite sector. Application to plasma equilibria. Nonlinear Anal. 119, 115–126 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jacobsen, J.: A Liouville-Gelfand equation for \(k\)-Hessian operators. Rocky Mt. J. Math. 34, 665–684 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal. 49, 241–269 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kikuchi, H., Wei, J.: A bifurcation diagram of solutions to an elliptic equation with exponential nonlinearity in higher dimensions. Proc. R. Soc. Edinb. Sect. A 148, 101–122 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liouville, J.: Sur l’équation aux différences partielles \(\frac{d^2 \log \lambda }{dudr}+\frac{\lambda }{2a^2}=0\), pp. 71–72. XVII I, J. Math. Pures Appl. (1853)Google Scholar
  17. 17.
    Mignot, F., Puel, J.P.: Sur une classe de problémes non lin éaires avec non linéairité positive, croissante, convexe. Commun. Partial Differ. Equ. 5, 791–836 (1980)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mignot, F., Puel, J.P.: Solution radiale singuliére de \(-\Delta u=\lambda e^u\). C. R. Acad. Sci. Paris Sér. I Math 307, 379–382 (1988)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Miyamoto, Y.: A limit equation and bifurcation diagrams of semilinear elliptic equations with general supercritical growth. J. Differ. Equ. 264, 2684–2707 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Miyamoto, Y.: Infinitely many non-radial singular solutions of \(\Delta u+e^u=0\) in \({\mathbb{R}}^N\setminus \{0\}\), \(4\le N\le 10\). Proc. R. Soc. Edinb. A. 148, 133–147 (2018)CrossRefGoogle Scholar
  21. 21.
    Pacard, F.: Solutions de \(\Delta u=-\lambda e^u\) ayant des singularités ponctuelles prescrites. C. R. Acad. Sci. Paris Sér. I Math 311(6), 317–320 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.School of Mathematics and StatisticsUniversity College DublinDublin 4Ireland
  3. 3.Laboratoire Amiénois de Mathématiques Fondamentales et Appliquée, (LAMFA UMR 7352 CNRS UPJV)Université de Picardie Jules VerneAmiensFrance

Personalised recommendations