Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 224–246 | Cite as

Quasi Pieces of the Bilinear Hilbert Transform Incorporated into a Paraproduct

  • Dong DongEmail author
Article
  • 28 Downloads

Abstract

We prove the boundedness of a class of tri-linear operators consisting of a quasi piece of bilinear Hilbert transform whose scale equals to or dominates the scale of its linear counter part. Such type of operators is motivated by the tri-linear Hilbert transform and its curved versions.

Keywords

Bilinear Hilbert transform Paraproduct Tri-linear operators 

Mathematics Subject Classification

42A50 47G10 42B99 

Notes

Acknowledgements

The author would like to thank Prof. Xiaochun Li for helpful discussions on this topic. He also acknowledges the support from Gene H. Golub Fund of Mathematics Department at University of Illinois.

References

  1. 1.
    Coifman, R., Meyer, Y.: Ondelettes et oprateurs. III. Hermann, Paris (1991)Google Scholar
  2. 2.
    Dong, D., Li, X.: On a hybrid of bilinear Hilbert transform and paraproduct, Acta. Math. Sin.-English Ser.  https://doi.org/10.1007/s10114-017-6415-9
  3. 3.
    Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transforms. I. Ann. Math. (2) 159(3), 889–933 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lacey, M., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty \). Ann. Math. 146, 693–724 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. (2) 149(2), 475–496 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, X.: Uniform bounds for the bilinear Hilbert transforms. II. Rev. Mat. Iberoam. 22(3), 1069–1126 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, X.: Uniform estimates for some paraproducts. N. Y. J. Math. 14, 145–192 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Li, X.: Bilinear Hilbert transforms along curves I: The monomial case. Anal. PDE 6(1), 197–220 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, Vol. II. Cambridge Studies in Advanced Mathematics, vol. 138. Cambridge University Press, Cambridge (2013)Google Scholar
  10. 10.
    Thiele, C.: A uniform estimate. Ann. Math. (2) 156(2), 519-–563 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations