Advertisement

Associated Forms: Current Progress and Open Problems

Article
  • 8 Downloads

Abstract

Let \(d\ge 3\), \(n\ge 2\). The object of our study is the morphism \(\Phi \), introduced in earlier articles by J. Alper, M. Eastwood and the author, that assigns to every homogeneous form of degree d on \({\mathbb {C}}^n\) for which the discriminant \(\Delta \) does not vanish a form of degree \(n(d-2)\) on the dual space, called the associated form. This morphism is \({\mathrm{SL}}_n\)-equivariant and is of interest in connection with the well-known Mather–Yau theorem, specifically, with the problem of explicit reconstruction of an isolated hypersurface singularity from its Tjurina algebra. Letting p be the smallest integer such that the product \(\Delta ^p\Phi \) extends to the entire affine space of degree d forms, one observes that the extended map defines a contravariant. In the present paper, we survey known results on the morphism \(\Phi \), as well as the contravariant \(\Delta ^p\Phi \), and state several open problems. Our goal is to draw the attention of complex analysts and geometers to the concept of the associated form and the intriguing connection between complex singularity theory and invariant theory revealed through it.

Keywords

Associated forms Isolated hypersurface singularities The Mather–Yau theorem Classical invariant theory Geometric Invariant Theory Contravariants of homogeneous forms 

Mathematics Subject Classification

13A50 14L24 32S25 

Notes

Acknowledgements

We are grateful to M. Fedorchuk for many very helpful discussions.

References

  1. 1.
    Alper, J., Isaev, A.V.: Associated forms in classical invariant theory and their applications to hypersurface singularities. Math. Ann. 360, 799–823 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alper, J., Isaev, A.V.: Associated forms and hypersurface singularities: the binary case. J. Reine Angew. Math.  https://doi.org/10.1515/crelle-2016-0008
  3. 3.
    Alper, J., Isaev, A.V., Kruzhilin, N.G.: Associated forms of binary quartics and ternary cubics. Transform. Groups 21, 593–618 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Benson, M.: Analytic equivalence of isolated hypersurface singularities defined by homogeneous polynomials. In: Singularities (Arcata, CA, 1981), Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 111–118. American Mathematical Society, Providence, RI (1983)Google Scholar
  6. 6.
    Bourbaki, N.: Commutative Algebra. Hermann, Paris (1972)MATHGoogle Scholar
  7. 7.
    Cayley, A.: On the 34 concomitants of the ternary cubic. Am. J. Math. 4, 1–15 (1881)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dolgachev, I.: Classical Algebraic Geometry. A Modern View. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  9. 9.
    Dolgachev, I.: Rational self-maps of moduli spaces, preprint, available from the Mathematics ArXiv at arXiv:1710.03373
  10. 10.
    Eastwood, M.G.: Moduli of isolated hypersurface singularities. Asian J. Math. 8, 305–313 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eastwood, M.G., Isaev, A.V.: Extracting invariants of isolated hypersurface singularities from their moduli algebras. Math. Ann. 356, 73–98 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Elliott, E.B.: An Introduction to the Algebra of Quantics. Clarendon Press, Oxford (1895)Google Scholar
  13. 13.
    Emsalem, J.: Géométrie des points épais. Bull. Soc. Math. France 106, 399–416 (1978)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fedorchuk, M.: GIT semistability of Hilbert points of Milnor algebras. Math. Ann. 367, 441–460 (2017)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fedorchuk, M., Isaev, A.V.: Stability of associated forms. J. Algebraic Geom. ArXiv at arXiv:1703.00438
  16. 16.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA (2008)Google Scholar
  17. 17.
    Gordan, P.: Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Koeffizienten einer endlichen Anzahl solcher Formen ist. J. Reine Angew. Math. 69, 323–354 (1868)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Görtz, U., Wedhorn, T.: Algebraic Geometry I. Schemes with Examples and Exercises, Advanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden (2010)Google Scholar
  19. 19.
    Grace, J.H., Young, A.: The Algebra of Invariants. Reprint of the 1903 Original. Cambridge University Press, Cambridge (2010)Google Scholar
  20. 20.
    Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer Monographs in Mathematics. Springer, Berlin (2007)MATHGoogle Scholar
  21. 21.
    Greuel, G.-M., Pham, T.H.: Mather-Yau theorem in positive characterstic. J. Algebr. Geom. 26, 347–355 (2017)CrossRefMATHGoogle Scholar
  22. 22.
    Harris, J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)Google Scholar
  23. 23.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1997)Google Scholar
  24. 24.
    Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36, 473–534 (1890)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hilbert, D.: Über die vollen Invariantensysteme. Math. Ann. 42, 313–373 (1893)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hochschild, G.: The Structure of Lie Groups. Holden-Day, Inc., San Francisco (1965)MATHGoogle Scholar
  27. 27.
    Huneke, C.: Hyman Bass and Ubiquity: Gorenstein Rings. In: Algebra, \(K\)-theory, Groups, and Education (New York, NY, 1997), Contemporary Mathematics, vol. 243, pp. 55–78. American Mathematical Society, Providence, RI (1999)Google Scholar
  28. 28.
    Isaev, A.V.: Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms. Proc. Steklov Inst. Math. 279, 245–256 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Isaev, A.V.: On two methods for reconstructing homogeneous hypersurface singularities from their Milnor algebras. Methods Appl. Anal. 21, 391–405 (2014)MathSciNetMATHGoogle Scholar
  30. 30.
    Isaev, A.V.: On the contravariant of homogeneous forms arising from isolated hypersurface singularities. Int. J. Math. 27(11), 1650097 (14 pages, electronic) (2016).  https://doi.org/10.1142/S0129167X1650097X
  31. 31.
    Isaev, A.V.: A criterion for isomorphism of Artinian Gorenstein algebras. J. Commut. Alg. 8, 89–111 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Isaev, A.V.: On the image of the associated form morphism. In: Proceedings of the Japanese-Australian Workshop on Real and Complex Singularities (JARCS VI ) (Kagoshima, 2015 ), Saitama Math. J. 31, pp. 89–101 (2017)Google Scholar
  33. 33.
    Isaev, A.V.: A combinatorial proof of the smoothness of catalecticant schemes associated to complete intersections. Ann. Combin. 21, 375–395 (2017)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Isaev, A.V., Kruzhilin, N.G.: Explicit reconstruction of homogeneous isolated hypersurface singularities from their Milnor algebras. Proc. Am. Math. Soc. 142, 581–590 (2014)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Iarrobino, A., Kanev, V.: Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  36. 36.
    Kung, J.P.S.: Canonical forms of binary forms: variations on a theme of Sylvester. In: Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl. 19. Springer, New York, pp. 46–58 (1990)Google Scholar
  37. 37.
    Lakshmibai, V., Raghavan, K.: Standard Monomial Theory. Invariant Theoretic Approach. Invariant Theory and Algebraic Transformation Groups VIII, Encyclopaedia of Mathematical Sciences, vol. 137. Springer, Berlin (2008)MATHGoogle Scholar
  38. 38.
    Mather, J., Yau, S.S.-T.: Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math. 69, 243–251 (1982)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)Google Scholar
  40. 40.
    Mukai, S.: An Introduction to Invariants and Moduli. Cambridge Studies in Advanced Mathematics, vol. 81. Cambridge University Press, Cambridge (2003)Google Scholar
  41. 41.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34. Springer, Berlin (1994)Google Scholar
  42. 42.
    Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ. 3, 369–377 (1963/1964)Google Scholar
  43. 43.
    Newstead, P.E.: Introduction to Moduli Problems and Orbit Spaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay. Narosa Publishing House, New Delhi (1978)Google Scholar
  44. 44.
    Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Salmon, G.: A Treatise on the Higher Plane Curves: Intended as a Sequel to “A Treatise of Conic Sections”. Hodges, Foster and Co, Dublin (1879)MATHGoogle Scholar
  46. 46.
    Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math. 278/279, 174–190 (1975)Google Scholar
  47. 47.
    Schmitt, A.H.W.: Geometric Invariant Theory and Decorated Principal Bundles. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008)CrossRefGoogle Scholar
  48. 48.
    Shoshitaĭshvili, A.N.: Functions with isomorphic Jacobian ideals. Funct. Anal. Appl. 10, 128–133 (1976)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Sylvester, J.J.: A synoptical table of the irreducible invariants and covariants to a binary quintic, with a scholium on a theorem in conditional hyperdeterminants. Am. J. Math. 1, 370–378 (1878)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Tauvel, P., Yu, R.W.T.: Lie Algebras and Algebraic Groups. Springer Monographs in Mathematics. Springer, Berlin (2005)Google Scholar
  51. 51.
    Tevelev, E.A.: Projectively dual varieties. J. Math. Sci. (N.Y.) 117, 4585–4732 (2003)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Vinberg, E.B., Onishchik, A.L.: Lie Groups and Algebraic Groups. Springer, Berlin (1990)MATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteAustralian National UniversityCanberraAustralia

Personalised recommendations