The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1660–1675 | Cite as

Symplectic Stability on Manifolds with Cylindrical Ends

  • Sean Curry
  • Álvaro PelayoEmail author
  • Xiudi Tang


The notion of Eliashberg–Gromov convex ends provides a natural restricted setting for the study of analogs of Moser’s symplectic stability result in the noncompact case, and this has been significantly developed in work of Cieliebak–Eliashberg. Retaining the end structure on the underlying smooth manifold, but dropping the convexity and completeness assumptions on the symplectic forms at infinity, we show that symplectic stability holds under a natural growth condition on the path of symplectic forms. The result can be straightforwardly applied as we show through explicit examples.


Moser stability Symplectic form Isotopy Hodge theory 

Mathematics Subject Classification

Primary 53D05 Secondary 53D35 57R52 58A14 



Álvaro Pelayo and Xiudi Tang are supported by NSF CAREER Grant DMS-1518420. We are very grateful to Roger Casals, Daniel Cristofaro-Gardiner, Yakov Eliashberg, Larry Guth, Rafe Mazzeo, Leonid Polterovich, Justin Roberts, Alan Weinstein, Paul Yang, and Shing-Tung Yau for helpful discussions about symplectic stability.


  1. 1.
    Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer-Verlag, Berlin (1998)CrossRefGoogle Scholar
  2. 2.
    Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53(2), 174–227 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bates, L., Peschke, G.: A remarkable symplectic structure. J. Differ. Geom. 32(2), 533–538 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bueler, E., Prokhorenkov, I.: Hodge theory and cohomology with compact supports. Soochow J. Math. 28(1), 33–55 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back, volume 59 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI. Symplectic geometry of affine complex manifolds (2012)Google Scholar
  6. 6.
    Eliashberg, Y., Gromov, M.: Convex symplectic manifolds. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), volume 52 of Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, pp. 135–162 (1991)Google Scholar
  7. 7.
    Giraud, G.: Sur le problème de Dirichlet généralisé (deuxième mémoire). Ann. Sci. École Norm. Sup. 3(46), 131–245 (1929)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gotay, M.J., Lashof, R., Śniatycki, J., Weinstein, A.: Closed forms on symplectic fibre bundles. Comment. Math. Helv. 58(4), 617–621 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gray, J.W.: Some global properties of contact structures. Ann. Math. 2(69), 421–450 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Greene, R.E., Shiohama, K.: Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. Trans. Am. Math. Soc. 255, 403–414 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gromov, M.L.: Stable mappings of foliations into manifolds. Math. USSR-Izvestiya 33, 707–734 (1969)MathSciNetGoogle Scholar
  12. 12.
    Gromov, M.L.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2013)zbMATHGoogle Scholar
  14. 14.
    Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Muller, M.-P.: Une structure symplectique sur \({{\bf R}}^6\) avec une sphère lagrangienne plongée et un champ de Liouville complet. Comment. Math. Helv. 65(4), 623–663 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pelayo, Á., Tang, X.: Moser stability for volume forms on noncompact fiber bundles, arXiv:1607.03800

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California San DiegoLa JollaUSA

Personalised recommendations