Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1479–1489 | Cite as

Positivity of LCK Potential

  • Liviu OrneaEmail author
  • Misha Verbitsky
Article

Abstract

Let M be a complex manifold and L an oriented real line bundle on M equipped with a flat connection. A “locally conformally Kähler” (LCK) form is a closed, positive (1,1)-form taking values in L, and an LCK manifold is one which admits an LCK form. Locally, any LCK form is expressed as an L-valued pluri-Laplacian of a function called LCK potential. We consider a manifold M with an LCK form admitting an LCK potential (globally on M), and prove that M admits a positive LCK potential. Then M admits a holomorphic embedding to a Hopf manifold, as shown in Ornea and Verbitsky (Math Ann 348:25–33, 2010).

Keywords

Locally conformally Kähler Potential Plurisubharmonic Holomorphicaly convex Regularized maximum 

Mathematics Subject Classification

53C55 32E05 32E10 

Notes

Acknowledgements

We are grateful to Victor Vuletescu for an interesting counterexample which stimulated our work on this problem; to Stefan Nemirovski for stimulating discussions and reference to Bremermann; to Cezar Joiţa for a careful reading and editing of the paper; to Matei Toma for communicating us the simple proof of Theorem 5.1; and to Jason Starr for invaluable answers given in Mathoverflow. We thank the anonymous referee for her or his most useful comments and suggestions. Liviu Ornea is partially supported by a Grant of Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0065, within PNCDI III. Misha Verbitsky is partially supported by the Russian Academic Excellence Project ’5-100” and CNPq - Process 313608/2017-2.

References

  1. 1.
    Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bremermann, H.J.: On the conjecture of the equivalence of the plurisubharmonic functions and the hartogs functions. Math. Ann. 131, 76–86 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bremermann, H.J.: On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Shilov boundaries. Trans. Am. Math. Soc 91, 246–276 (1959)zbMATHGoogle Scholar
  4. 4.
    Brunella, M.: Locally conformally Kähler metrics on Kato surfaces. Nagoya Math. J. 202, 77–81 (2011). arXiv:1001.0530 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demailly, J.-P.: Estimations \(L^2\) pour l’opérateur \(\bar{\partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. Ecole Norm. Sup. 15, 457–511 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. 159, 1247–1274 (2004). arXiv:math/0105176 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dragomir, S., Ornea, L.: Locally Conformally Kähler Manifolds. Progress in Math, vol. 55. Birkhäuser, Basel (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gauduchon, P., Ornea, L.: Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst. Fourier (Grenoble) 48, 1107–1128 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goto, R.: On the stability of locally conformal Kaehler structures. J. Math. Soc. Jpn. 66(4), 1375–1401 (2014). arXiv:1012.2285 CrossRefzbMATHGoogle Scholar
  10. 10.
    Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier 55(1), 1291–1300 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ornea, L., Verbitsky, M.: Locally conformal Kähler manifolds with potential. Math. Ann. 348, 25–33 (2010). arXiv:math/0407231 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ornea, L., Verbitsky, M.: Morse-Novikov cohomology of locally conformally Kähler manifolds. J. Geom. Phys. 59(3), 295–305 (2009). arXiv:0712.0107 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ornea, L., Verbitsky, M.: Topology of locally conformally Kähler manifolds with potential. Int. Math. Res. Notices 4, 117–126 (2010). arXiv:0904.3362 zbMATHGoogle Scholar
  14. 14.
    Ornea, L., Verbitsky, M.: Automorphisms of locally conformally Kaehler manifolds. IMRN 2012(4), 894–903 (2012). arXiv:0906.2836 CrossRefzbMATHGoogle Scholar
  15. 15.
    Ornea, L., Verbitsky, M.: Embeddings of compact Sasakian manifolds. Math. Res. Lett. 14(4), 703–710 (2007). arXiv:math/0609617 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ornea, L., Verbitsky, M.: LCK rank of locally conformally Kähler manifolds with potential. J. Geom. Phys. 107, 92–98 (2016). arXiv:1601.07413 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ornea, L., Verbitsky, M.: Locally conformally Kähler metrics obtained from pseudoconvex shells. Proc. Am. Math. Soc. 144, 325–335 (2016). arXiv:1210.2080 CrossRefzbMATHGoogle Scholar
  18. 18.
    Ornea, L., Verbitsky, M.: Hopf surfaces in locally conformally Kahler manifolds with potential. arxiv:1601.07421, v2
  19. 19.
    Ornea, L., Verbitsky, M.: Embedding of LCK manifolds with potential into Hopf manifolds using Riesz-Schauder theorem. In: Angella, D., Medori, C., Tomassini, A. (eds.) Complex and Symplectic Geometry. Springer INdAM Ser, vol. 21, pp. 137–148. Springer, Cham (2017). arXiv:1702.00985 CrossRefGoogle Scholar
  20. 20.
    Otiman, A.: Morse-Novikov cohomology of locally conformally Kähler surfaces. Math. Z. 289(1–2), 605–628 (2018). arXiv:1609.07675
  21. 21.
    Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Verbitsky, M.: Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds. Proc. Steklov Inst. Math. 246, 54–78 (2004). arXiv:math/0302219 Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania
  2. 2.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  3. 3.Instituto Nacional de Matemática Pura e Aplicada (IMPA)Rio de JaneiroBrasil
  4. 4.Laboratory of Algebraic Geometry, Faculty of MathematicsNational Research University HSEMoscowRussia

Personalised recommendations