The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1407–1427 | Cite as

Holomorphic Foliations Tangent to Levi-Flat Subsets

  • Jane Bretas
  • Arturo Fernández-Pérez
  • Rogério MolEmail author


An irreducible real analytic subvariety H of real dimension \(2n +1\) in a complex manifold M is a Levi-flat subset if its regular part carries a complex foliation of dimension n. Locally, a germ of real analytic Levi-flat subset is contained in a germ of irreducible complex variety \(H^{\imath }\) of dimension \(n+1\), called intrinsic complexification, which can be globalized to a neighborhood of H in M provided H is a coherent analytic subvariety. In this case, a singular holomorphic foliation \(\mathcal {F}\) of dimension n in M that is tangent to H is also tangent to \(H^{\imath }\). In this paper, we prove integration results of local and global nature for the restriction to \(H^{\imath }\) of a singular holomorphic foliation \(\mathcal {F}\) tangent to a real analytic Levi-flat subset H. From a local viewpoint, if \(n=1\) and \(H^{\imath }\) has an isolated singularity, then \(\mathcal {F}|_{H^{\imath }}\) has a meromorphic first integral. From a global perspective, when \(M = \mathbb {P}^N\) and H is coherent and of low codimension, \(H^{\imath }\) extends to an algebraic variety. In this case, \(\mathcal {F}|_{H^{\imath }}\) has a rational first integral provided infinitely many leaves of \(\mathcal {F}\) in H are algebraic.


Holomorphic foliations CR-manifolds Levi-flat varieties 

Mathematics Subject Classification

Primary 32S65 Secondary 32V40 



Funding was provided by CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico.


  1. 1.
    Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real submanifolds in complex space and their mappings. Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1999)Google Scholar
  2. 2.
    Bretas, J.: Folheações holomorfas tangentes a subconjuntos Levi-flat (Portuguese). PhD Thesis, Universidade Federal de Minas Gerais, Brazil, (2016)Google Scholar
  3. 3.
    Brunella, M.: Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6(4), 661–672 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brunella, M.: Some remarks on meromorphic first integrals. Enseign. Math. 58(3–4), 315–324 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl. 11(1), 17–90 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85, 77–99 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cerveau, D., Lins, A.: Neto. Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation. Amer. J. Math. 133(3), 677–716 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chow, W.L.: On meromorphic maps of algebraic varieties. Ann. Math. 2(89), 391–403 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernández-Pérez, A.: On Levi-flat hypersurfaces with generic real singular set. J. Geom. Anal. 23(4), 2020–2033 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghys, E.: À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes. Rend. Circ. Mat. Palermo 49(1), 175–180 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gómez-Mont, X.: Integrals for holomorphic foliations with singularities having all leaves compact. Ann. Inst. Fourier 39(2), 451–458 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. 79(2), 109–203 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. 79(2), 205–326 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jouanolou, J.-P.: Équations de Pfaff algébriques. Lecture Notes in Mathematics. Springer, Berlin (1979)Google Scholar
  15. 15.
    Lebl, J.: Algebraic Levi-flat hypervarieties in complex projective space. J. Geom. Anal. 22(2), 410–432 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lebl, J.: Singular set of a Levi-flat hypersurface is Levi-flat. Math. Ann. 355(3), 1177–1199 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lebl, J.: Singular Levi-flat hypersurfaces in complex projective space induced by curves in the Grassmannian. Internat. J. Math. 26(5), 1550036 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Narasimhan, R.: Introduction to the theory of analytic spaces. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1966)Google Scholar
  19. 19.
    Pereira, J.V., Pirio, L.: An invitation to web geometry. In: Carneiro, E. (ed.) IMPA Monographs. Springer, Cham (2015)Google Scholar
  20. 20.
    Pinchuk, S., Shafikov, R., Sukhov, A.: On dicritical singularities of Levi-flat sets. Pre-print, arXiv:1606.09294v3, (2017)
  21. 21.
    Shafikov, R.: Real analytic sets in complex spaces and CR maps. Math. Z. 256(4), 757–767 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Suwa, T.: Indices of Vector Fields and Residues of Singular Holomorphic Foliations. Actualités Mathématiques. [Current Mathematical Topics]. Hermann, Paris (1998)zbMATHGoogle Scholar
  23. 23.
    van den Dries, L.: Tame topology and o-minimal structures. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticaCentro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations