The Journal of Geometric Analysis

, Volume 29, Issue 2, pp 1109–1115 | Cite as

Dimension-Free Properties of Strong Muckenhoupt and Reverse Hölder Weights for Radon Measures

  • O. Beznosova
  • A. ReznikovEmail author


In this paper, we prove self-improvement properties of strong Muckenhoupt and Reverse Hölder weights with respect to a general Radon measure on \(\mathbb {R}^n\). We derive our result via a Bellman function argument. An important feature of our proof is that it uses only the Bellman function for the one-dimensional problem for Lebesgue measure; with this function in hand, we derive dimension-free results for general measures and dimensions.


Bellman function Dimension-free estimates Muckenhoupt weights Reverse Hölder weights 

Mathematics Subject Classification

Primary 42B35 Secondary 43A85 



We are very grateful to Vasiliy Vasyunin for helpful discussions and suggestions on the presentation of this paper.


  1. 1.
    Dindoš, M., Wall, T.: The sharp \(A_p\) constant for weights in a reverse-Hölder class. Rev. Mat. Iberoam. 25(2), 559–594 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Domelevo, K., Petermichl, S., Wittwer, J.: A linear dimensionless bound for the weighted Riesz vector. Bull. Sci. Math. 141(5), 385–407 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dragičević, O., Volberg, A.: Bellman functions and dimensionless estimates of Littlewood-Paley type. J. Oper. Theory 56(1), 167–198 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    García-Cuerva, J., de Francia, J.L.R.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 104 (1985)Google Scholar
  5. 5.
    Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Korenovskyy, A.A., Lerner, A.K., Stokolos, A.M.: On a multidimensional form of F. Riesz’s, “rising sun” lemma. Proc. Am. Math. Soc. 133(5), 1437–1440 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Luque, T., Pérez, C., Rela, E.: Reverse Hölder property for strong weights and general measures. J. Geom. Anal. 27(1), 162–182 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nazarov, F., Reznikov, A., Treil, S., Volberg, A.: A Bellman function proof of the \(L^2\) bump conjecture. J. Anal. Math. 121, 255–277 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Treil, S.: Sharp \(A_2\) estimates of Haar shifts via Bellman function. In: Recent Trends in Analysis, Theta Ser. Adv. Math., vol. 16, pp. 187–208. Theta, Bucharest (2013)Google Scholar
  10. 10.
    Vasyunin, V.I.: Mutual estimates for \(L^p\)-norms and the Bellman function. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), (Issledovaniya po Lineı̲nym Operatoram i Teorii Funktsiı̲. 36) 355, 81–138, 237–238 (2008)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations