The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 868–901 | Cite as

On a New Harmonic Heat Flow with the Reverse Hölder Inequalities

  • Kazuhiro HorihataEmail author


This paper first proposes a new approximate scheme to construct a harmonic heat flow u between Q and \({\mathbb {S}}^D\)\(\subset \)\({\mathbb {R}}^{D+1}\) with Q\(=\)\((0,\infty )\)\(\times \)\({\mathbb {B}}^d\) and positive integers d and D: We agree that harmonic heat flow u means a solution of
$$\begin{aligned} \frac{\partial u}{\partial t} \, - \, \triangle u \, - \, | \nabla u|^2 u \; = \; 0. \end{aligned}$$
Its scheme is crucially given by
$$\begin{aligned} \frac{\partial u_\lambda }{\partial t} \, - \, \triangle u_\lambda \, + \, \lambda ^{1-\kappa } \bigl ( | u_\lambda |^2 \, - \, 1 \bigr ) u_\lambda \; = \; 0, \end{aligned}$$
where the unknown mapping \(u_\lambda \) is from Q to \({\mathbb {R}}^{D+1}\) with positive number \(\lambda \) and \(\kappa (t)\)\(=\)\(\arctan (t)/\pi \)\((0 \le t)\). The benefit to introduce a time-dependent parameter \(\lambda ^{1-\kappa }\) is readily to see
$$\begin{aligned} \int _{Q} \lambda ^{1-\kappa } ( | u_\lambda |^2 \, - \, 1 )^2 \, \mathrm{d}t \mathrm{d}x \; \le \; \frac{C}{\log \lambda } \end{aligned}$$
for some positive constant C independent of \(\lambda \). Next, making the best of it, we prove that a passing to the limits \(\lambda \nearrow \infty \) ( modulo sub-sequence of \(\lambda \) ) brings the existence of a harmonic heat flow into spheres with (i) a global energy inequality, (ii) a monotonicity for the scaled energy, (iii) a reverse Poincaré inequality. These inequalities (i), (ii) and (iii) improve the estimates on its singular set of a harmonic heat flow by Chen and Struwe (Math Z 201(1):83–103, 1989), i.e. I show that a singular set of the new harmonic heat flows into spheres has at most finite \((d-\epsilon _0)\)-dimensional Hausdorff measure with respect to the parabolic metric whereupon \(\epsilon _0\) is a small positive number. We finally prove that if the harmonic heat flows is a constant at the boundary, then \(u_\lambda (t)\) strongly converges to the constant \(t \nearrow \infty \) in \(H^{1,2} ({\mathbb {B}}^d;{\mathbb {S}}^{D+1})\). We call this the parabolic constancy theorem. We restrict ourselves a harmonic heat flow from the unit ball into a sphere to avoid confusion of notation. But it is readily seen that our results can be extended to it between compact Riemannian manifolds using a distance function combined with Nash’s imbedding theorem.


Harmonic heat flow A monotonicity inequality A reverse Poincaré inequality 

Mathematics Subject Classification

35K10 35K55 58J35 


  1. 1.
    Bertsch, M., Dal Passo, R., Vd Hout, R.: Non-uniqueness for the heat flow of harmonic maps on the disk arch. Ration. Mech. Anal. 161(2), 93–112 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertsch, M., Dal Passo, R., Pisante, A.: Point singularities and non-uniqueness for the heat flow for harmonic maps. Commun. Partial Differ. Equ. 28(5–6), 1135–1160 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bethuel, F., Brezis, H., Hélein, R.: Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Partial Differ. Equ. 1, 123–148 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier Stokes equations. Commun. Pure. Appl. Math. 35, 771–831 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, Y., Ding, W.-Y.: A Result on the Global Existence for Heat Flows of Harmonic Maps from \(D^2\) into \(S^2\), in Nematics, pp. 37–47. Springer, Dordrecht (1991)zbMATHGoogle Scholar
  8. 8.
    Chen, Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201(1), 69–74 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, Y., Lin, F.H.: Evolution of harmonic maps with Dirichlet boundary condition. Commun. Anal. Geom. 1(3–4), 327–346 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Y., Li, J., Lin, F.H.: Partial regularity for weak heat flows into spheres. Commun. Pure. Appl. Math. 48(4), 429–448 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201(1), 83–103 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cheng, X.: Estimate of the singular set of the evolution problem for harmonic maps. J. Differ. Geom. 34(1), 169–174 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Coron, M.: Non-uniqueness for the heat flow of harmonic maps. Ann. Inst. H. Poincaré, Analyse Non Linéaire 7(4), 335–344 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–169 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Evans, L.C.: Weak convergence methods for nonlinear partial differential equations. CBMS Reg. Conf. Ser. Math. 74, 82 (1988)Google Scholar
  16. 16.
    Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116(2), 101–113 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Evans, L.C.: Partial differential equations, A.M.S. Grad. Stud. Math. 19 (2000)Google Scholar
  18. 18.
    Feldman, M.: Partial regularity for harmonic maps of evolution into spheres. Commun. Partial Differ. Equ. 19(5–6), 761–790 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freire, A.: Uniqueness for the harmonic map flow in two dimension. Calc. Var. Partial Differ. Equ. 3(1), 95–105 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Giaquinta, M., Struwe, M.: On the partial regularity of weak solutions of nonlinear parabolic systems. Math. Z. 179(4), 437–451 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hong, M.C.: Some new examples for non-uniqueness of the evolution problem of harmonic maps. Commun. Anal. Geom. 6(4), 809–818 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hélein, R.: Regularité des applications faiblement harmoniques entre une surface et une sphère. C.R.Acad. Sci. Paris Sér. I Math 311(9), 519–524 (1990)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ladyžhenskaya, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence R.I. (1968) (1968)Google Scholar
  24. 24.
    Lemaire, L.: Applications harmoniques de variétés à bord. C.R. Acad. Sci. Paris A279, 925–927 (1974)zbMATHGoogle Scholar
  25. 25.
    Lemaire, L.: Applications harmoniques de surface riemanniennes. J. Differ. Geom. 13(1), 51–78 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana. Univ. Math. J. 37(2), 349–367 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shatah, J.: Weak solutions and development of singularities of the \(SU(2)\) \(\sigma \)-model. Commun. Pure. Appl. Math. 41(4), 459–469 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics ETH Zürich, Birkhäuser (1996)Google Scholar
  30. 30.
    Schoen, R.S., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.6-3, Aramaki, Aoba-kuSendaiJapan

Personalised recommendations