Advertisement

The Journal of Geometric Analysis

, Volume 29, Issue 1, pp 828–867 | Cite as

Comparison Geometry for Integral Bakry–Émery Ricci Tensor Bounds

  • Jia-Yong Wu
Article
  • 200 Downloads

Abstract

We prove mean curvature and volume comparison estimates on smooth metric measure spaces when their integral Bakry–Émery Ricci tensor bounds, extending Wei–Wylie’s comparison results to the integral case. We also apply comparison results to get diameter estimates, eigenvalue estimates, and volume growth estimates on smooth metric measure spaces with their normalized integral smallness for Bakry–Émery Ricci tensor. These give generalizations of some work of Petersen–Wei, Aubry, Petersen–Sprouse, Yau and more.

Keywords

Bakry–Émery Ricci tensor Smooth metric measure space Integral curvature Comparison theorem Diameter estimate Eigenvalue estimate Volume growth estimate 

Mathematics Subject Classification

Primary 53C20 

Notes

Acknowledgements

The author sincerely thanks Professor Guofang Wei for her useful note, valuable advices, stimulating discussions and bringing my attention to the paper [13]. The author also thanks Peng Wu for many helpful discussions. This work was partially supported by the Natural Science Foundation of Shanghai (No. 17ZR1412800) and the National Natural Science Foundation of China (No. 11671141).

References

  1. 1.
    Aubry, E.: Finiteness of \(\pi _1\) and geometric inequalities in almost positive Ricci curvature. Ann. Sci. Ecole Norm. Sup. 40, 675–695 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aubry, E.: Bounds on the volume entropy and simplicial volume in Ricci curvature \(L^p\)-bounded from below. Int. Math. Res. Not. IMRN 10, 1933–1946 (2009)zbMATHGoogle Scholar
  3. 3.
    Bakry, D., Émery, M.: Diffusion hypercontractivitives. In: Séminaire de Probabilités XIX, 1983/1984. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)Google Scholar
  4. 4.
    Bakry, D., Qian, Z.-M.: Some new results on eigenvectors via dimension, diameter and Ricci curvature. Adv. Math. 155, 98–153 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bakry, D., Qian, Z.-M.: Volume comparison theorems without Jacobi fields. In: Current Trends in Potential Theory, Theta Ser. Adv. Math., vol. 4, pp. 115–122 (2005)Google Scholar
  6. 6.
    Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289–297 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. (2) 145, 477–501 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dai, X.-Z., Petersen, P., Wei, G.-F.: Integral pinching theorems. Manuscr. Math. 101, 143–152 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dai, X.-Z., Wei, G.-F.: A heat kernel lower bound for integral Ricci curvature. Mich. Math. J. 52, 61–69 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dai, X.-Z., Wei, G.-F., Zhang, Z.-L.: Local sobolev constant estimate for integral Ricci curvature bounds. arXiv:1601.08191
  11. 11.
    Gallot, S.: Isoperimetric inequalities based on integral norms of Ricci curvature. Astérisque. 157–158, 191–216, (1988). Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987)Google Scholar
  12. 12.
    Hamilton, R.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)Google Scholar
  13. 13.
    Hu, Z.-S., Xu, S.-L.: Bounds on the fundamental groups with integral curvature bound. Geom. Dedicata 143, 1–16 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pure. Appl. 84, 1295–1361 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Limoncu, M.: The Bakry-Emery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Petersen, P., Sprouse, C.: Integral curvature bounds, distance estimates and applications. J. Differ. Geom. 50, 269–298 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Petersen, P., Wei, G.-F.: Relative volume comparison with integral curvature bounds. GAFA 7, 1031–1045 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Petersen, P., Wei, G.-F.: Analysis and geometry on manifolds with integral Ricci curvature bounds. II. Trans. AMS. 353, 457–478 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tadano, H.: Remark on a diameter bound for complete Riemannian manifolds with positive Bakry-Émery Ricci curvature. Differ. Geom. Appl. 44, 136–143 (2016)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wei, G.-F., Wylie, W.: Comparison geometry for the smooth metric measure spaces. In: Proceedings of the 4th International Congress of Chinese Mathematicians, vol. 2, pp. 191–202 (2007)Google Scholar
  22. 22.
    Wei, G.-F., Wylie, W.: Comparison geometry for the Bakry-Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Yang, D.: Convergence of Riemannian manifolds with integral bounds on curvature I. Ann. Sci. École Norm. Sup. 25, 77–105 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yau, S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhu, S.-H.: The comparison geometry of Ricci curvature. In: Comparison geometry (Berkeley, CA, 1993-94), Math. Sci. Res. Inst. Publ, vol. 30, pp. 221–262. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Maritime UniversityShanghaiPeople’s Republic of China

Personalised recommendations