Advertisement

The Second Inner Variation of Energy and the Morse Index of Limit Interfaces

  • Pedro GasparEmail author
Article
  • 19 Downloads

Abstract

In this article, we study the second variation of the energy functional associated to the Allen–Cahn equation on closed manifolds. Extending well-known analogies between the gradient theory of phase transitions and the theory of minimal hypersurfaces, we prove the upper semicontinuity of the eigenvalues of the stability operator and consequently obtain upper bounds for the Morse index of limit interfaces which arise from solutions with bounded energy and index without assuming any multiplicity or orientability condition on these hypersurfaces. This extends some recent results of Le (Indiana Univ Math J 60:1843–1856, 2011; J Math Pures Appl 103:1317–1345, 2015)) and Hiesmayr (arXiv:1704.07738 preprint [math.DG], 2017).

Keywords

Minimal surfaces Allen–Cahn equation Phase transitions 

Mathematics Subject Classification

53C21 (primary) 49Q05 35J60 

Notes

Acknowledgements

This work is partially based on my Ph.D. Thesis at IMPA, Brazil. I would like to thank my Advisor Fernando Codá Marques for his constant encouragement and support. This work was carried out while visiting the Mathematics Department of Princeton University during 2017–2018. I am grateful to this institution for its kind hospitality and support.

References

  1. 1.
    Cahn, J., Allen, S.: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J. Phys. Colloq. 38, C7–C51 (1977)CrossRefGoogle Scholar
  2. 2.
    Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. arXiv:1803.02716v2 preprint [math.DG] (2018)
  3. 3.
    Gaspar, P., Guaraco, M.A.: The Allen-Cahn equation on closed manifolds. Calc. Var. Partial Differ. Equ. 57, 101 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Guaraco, M.A.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108, 91–133 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hiesmayr, F.: Spectrum and index of two-sided Allen–Cahn minimal hypersurfaces. arXiv:1704.07738 preprint [math.DG] (2017)
  6. 6.
    Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equ. 10, 49–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38, 417–461 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. A 111, 69–84 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Le, N.Q.: On the second inner variation of the Allen-Cahn functional and its applications. Indiana Univ. Math. J. 60, 1843–1856 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Le, N.Q.: On the second inner variations of Allen-Cahn type energies and applications to local minimizers. J. Math. Pures Appl. 103, 1317–1345 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mantoulidis, C.: Allen–Cahn min–max on surfaces. arXiv:1706.05946 preprint [math.AP] (2017)
  12. 12.
    Marques, F.C., Neves, A.: Morse index and multiplicity of min-max minimal hypersurfaces. Camb. J. Math. 4, 463–511 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209, 577–616 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Modica, L., Mortola, S.: Il limite nella \(\Gamma \)-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14, 526–529 (1977)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pacard, F.: The role of minimal surfaces in the study of the Allen–Cahn equation. In: Geometric Analysis: Partial Differential Equations and Surfaces, Contemporary Mathematics, vol. 570, pp. 137–163. American Mathematical Society, Providence (2012)Google Scholar
  17. 17.
    Reshetnyak, Y.G.: Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9, 1039–1045 (1968)CrossRefzbMATHGoogle Scholar
  18. 18.
    Savin, O.: Phase transitions, minimal surfaces and a conjecture of de Giorgi. Curr. Dev. Math. 2009, 59–114 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34, 741–797 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Simon, L.: Lectures on Geometric Measure Theory. The Australian National University, Mathematical Sciences Institute, Centre for Mathematics and Its Applications (1983)Google Scholar
  21. 21.
    Smith, G.: Bifurcation of solutions to the Allen-Cahn equation. J. Lond. Math. Soc. 94, 667–687 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tonegawa, Y.: On stable critical points for a singular perturbation problem. Commun. Anal. Geom. 13, 439–459 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tonegawa, Y., Wickramasekera, N.: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory. J. reine angew. Math. (Crelles J.) 2012, 191–210 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wang, K., Wei, J.: Finite Morse index implies finite ends. arXiv:1705.06831 preprint [math.AP] (2017)
  26. 26.
    Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. 179, 843–1007 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2019

Authors and Affiliations

  1. 1.Instituto de Matemática Pura e Aplicada (IMPA)Rio de JaneiroBrazil
  2. 2.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations