Functions of Nearly Maximal Gowers–Host–Kra Norms on Euclidean Spaces

  • A. Martina NeumanEmail author


Let \(k\ge 2, n\ge 1\) be integers. Let \(f: {\mathbb {R}}^{n} \rightarrow {\mathbb {C}}\). The kth Gowers–Host–Kra norm of f is defined recursively by
$$\begin{aligned} \Vert f\Vert _{U^{k}}^{2^{k}} =\int _{{\mathbb {R}}^{n}} \Vert T^{h}f \cdot {\bar{f}} \Vert _{U^{k-1}}^{2^{k-1}} \, \text {d}h \end{aligned}$$
with \(T^{h}f(x) = f(x+h)\) and \(\Vert f\Vert _{U^1} = | \int _{{\mathbb {R}}^{n}} f(x)\, \text {d}x |\). These norms were introduced by Gowers (Geom Funct Anal 11:465–588, 2001) in his work on Szemerédi’s theorem, and by Host and Kra (in Ann Math 161:398–488, 2005) in ergodic setting. These norms are also discussed extensively in Tao and Vu (in Additive combinatorics, Cambridge University Press, 2016). It is shown by Eisner and Tao (in J Anal Math 117:133–186, 2012) that for every \(k\ge 2\) there exist \(A(k,n)< \infty \) and \(p_{k} = 2^{k}/(k+1)\) such that \(\Vert f\Vert _{U^{k}} \le A(k,n)\Vert f\Vert _{p_{k}}\), for all \(f \in L^{p_{k}}({\mathbb {R}}^{n})\). The optimal constant A(kn) and the extremizers for this inequality are known [9]. In this dissertation, it is shown that if the ratio \(\Vert f \Vert _{U^{k}}/\Vert f\Vert _{p_{k}}\) is nearly maximal, then f is close in \(L^{p_{k}}\) norm to an extremizer.


Gowers–Host–Kra norms on Euclidean spaces Brascamp–Lieb inequalities Stability problems Brunn–Minkowski inequality 

Mathematics Subject Classification



  1. 1.
    Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure, and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bogachev, V.: Measure Theory, vol. I. Springer, Berlin (2008)Google Scholar
  3. 3.
    Brezis, H.: Functional Analysis, Sobolev Spaces, and Partial Differential Equations (Universitext). Springer, New York (2010)Google Scholar
  4. 4.
    Burchard, A.: Cases of equality in the Riesz rearrangement inequality. Ann. Math. (2) 143(3), 499–528 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christ, M.: On Young’s inequality for Heisenberg groups. Preprint. math.CA. arXiv:1706.02005
  6. 6.
    Christ, M.: Subsets of Euclidean space with nearly maximal Gowers norms. Preprint. math.CA. arXiv:1512.03355
  7. 7.
    Christ, M.: A sharpened Hausdorff–Young inequality. Preprint. math.CA. arXiv:1406.1210
  8. 8.
    Christ, M.: Near extremizers of Young’s inequality for \({\mathbb{R}}^{d}\). Preprint. math.CA. arXiv:1112.4875
  9. 9.
    Eisner, T., Tao, T.: Large values of the Gowers–Host–Kra seminorms. J. Anal. Math. 117, 133–186 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gowers, W.: A new proof of Szemerédi’s Theorem. Geom. Funct. Anal. 11, 465–588 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Janson, S.: On interpolation of multilinear operators. In: Function Spaces and Applications. Lecture Notes in Mathematics, vol. 1302, pp. 290–302. Springer, Berlin (1989)Google Scholar
  12. 12.
    Host, B., Kra, B.: Nonconventional averages and nilmanifolds. Ann. Math. 161, 398–488 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lieb, E., Loss, M.: Analysis. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  14. 14.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill Education, Singapore (1977)zbMATHGoogle Scholar
  15. 15.
    Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  16. 16.
    Tao, T., Vu, V.: Additive Combinatorics. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations