The Journal of Geometric Analysis

, Volume 28, Issue 4, pp 3081–3108 | Cite as

Extension and Boundedness of Operators on Morrey Spaces from Extrapolation Techniques and Embeddings

  • Javier DuoandikoetxeaEmail author
  • Marcel Rosenthal


We prove that operators satisfying the hypotheses of the extrapolation theorem for Muckenhoupt weights are bounded on weighted Morrey spaces. As a consequence, we obtain at once a number of results that have been proved individually for many operators. On the other hand, our theorems provide a variety of new results even for the unweighted case because we do not use any representation formula or pointwise bound of the operator as was assumed by previous authors. To extend the operators to Morrey spaces we show different (continuous) embeddings of (weighted) Morrey spaces into appropriate Muckenhoupt \(A_1\) weighted \(L_p\) spaces, which enable us to define the operators on the considered Morrey spaces by restriction. In this way, we can avoid the delicate problem of the definition of the operator, often ignored by the authors. In dealing with the extension problem through the embeddings (instead of using duality), one is neither restricted in the parameter range of the p’s (in particular \(p=1\) is admissible and applies to weak-type inequalities) nor the operator has to be linear. Another remarkable consequence of our results is that vector-valued inequalities in Morrey spaces are automatically deduced. On the other hand, we also obtain \(A_\infty \)-weighted inequalities with Morrey quasinorms.


Morrey spaces Embeddings Muckenhoupt weights Extrapolation Calderón–Zygmund operators Mihlin–Hörmander multipliers Rough operators 

Mathematics Subject Classification

Primary 42B35 46E30 42B15 42B20 Secondary 42B25 



Javier Duoandikoetxea is supported by the Grants MTM2014-53850-P of the Ministerio de Economía y Competitividad (Spain) and Grant IT-641-13 of the Basque Government. Marcel Rosenthal is supported by the German Academic Exchange Service (DAAD).


  1. 1.
    Adams, D.R.: Morrey Spaces. Lecture Notes in Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015)Google Scholar
  2. 2.
    Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50, 201–230 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Álvarez, J.: Continuity of Calderón–Zygmund type operators on the predual of a Morrey space. Clifford Algebras in Analysis and Related Topics, pp. 309–319. CRC Press, Boca Raton (1996)Google Scholar
  4. 4.
    Álvarez, J., Bagby, R.J., Kurtz, D.S., Pérez, C.: Weighted estimates for commutators of linear operators. Studia Math. 104(2), 195–209 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auscher, P., Martell, J.M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. I. General operator theory and weights. Adv. Math. 212, 225–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carro, M.J., Duoandikoetxea, J., Lorente, M.: Weighted estimates in a limited range with applications to the Bochner–Riesz operators. Indiana Univ. Math. J. 61(4), 1485–1511 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chanillo, S.: Weighted norm inequalities for strongly singular convolution operators. Trans. Am. Math. Soc. 281(1), 77–107 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chanillo, S., Kurtz, G., Sampson, G.: Weighted \(L^p\) estimates for oscillating kernels. Ark. Mat. 21(2), 233–257 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. (7) 7(3–4), 273–279 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Extrapolation from \(A_\infty \) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia. Operator Theory: Advances and Applications. Birkhäuser, Basel (2011)zbMATHGoogle Scholar
  12. 12.
    Ding, Y., Yang, D., Zhou, Z.: Boundedness of sublinear operators and commutators on Morrey spaces. Yokohama Math. J. 46(1), 15–27 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ding, Y., Fan, D., Pan, Y.: Weighted boundedness for a class of rough Marcinkiewicz integrals. Indiana Univ. Math. J. 48, 1037–1055 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dos Santos Ferreira, D., Staubach, W.: Global and local regularity of Fourier integral operators on weighted and unweighted spaces. Mem. Am. Math. Soc. 229, 1074 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Trans. Am. Math. Soc. 336(2), 869–880 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI (2001)Google Scholar
  17. 17.
    Duoandikoetxea, J.: Extrapolation of weights revisited: new proofs and sharp bounds. J. Funct. Anal. 260(6), 1886–1901 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duoandikoetxea, J., Rubio de Francia, J.L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84(3), 541–561 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Duoandikoetxea, J., Seijo, E.: Weighted inequalities for rough square functions through extrapolation. Studia Math. 149(3), 239–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gehring, F.W.: The \(L^{p}\)-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 2nd edn. Springer, New York (2008)Google Scholar
  22. 22.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009)Google Scholar
  23. 23.
    Guliyev, V.S.: Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J. 3(3), 33–61 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Guliyev, V.S., Aliyev, S.S., Karaman, T., Shukurov, P.S.: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Integr. Equ. Oper. Theory 71, 327–355 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Izumi, T., Sawano, Y., Tanaka, H.: Littlewood–Paley theory for Morrey spaces and their preduals. Rev. Mat. Complut. 28(2), 411–447 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Johnson, R., Neugebauer, C.J.: Change of variable results for \(A_p\) and reverse Hölder \(RH_r\)-classes. Trans. Am. Math. Soc. 328, 639–666 (1991)Google Scholar
  27. 27.
    Karaman, T., Guliyev, V.S., Serbetci, A.: Boundedness of sublinear operators generated by Calderón–Zygmund operators on generalized weighted Morrey spaces. An. Stiint. Univ. Al. I. Cuza Iasi Ser. Noua, Mat. 60(1), 227–244 (2014)zbMATHGoogle Scholar
  28. 28.
    Knese, G., McCarthy, J.E., Moen, K.: Unions of Lebesgue spaces and \(A_1\) majorants. Pacific J. Math. 280(2), 411–432 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282(2), 219–231 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kurtz, D.S.: Littlewood–Paley and multiplier theorems on weighted \(L^p\) spaces. Trans. Am. Math. Soc. 259(1), 235–254 (1980)zbMATHGoogle Scholar
  31. 31.
    Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Am. Math. Soc. 255, 343–362 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lu, S., Ding, Y., Yan, D.: Singular Integrals and Related Topics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Mustafayev, R.C.: On boundedness of sublinear operators in weighted Morrey spaces. Azerb. J. Math. 2, 66–79 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nakamura, S.: Generalized weighted Morrey spaces and classical operators. Math. Nachr. 289, 2235–2262 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nakamura, S., Sawano, Y.: The singular integral operator and its commutator on weighted Morrey spaces. Collect. Math. 68(2), 145–174 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Peetre, J.: On convolution operators leaving \(L^{p,\lambda }\) spaces invariant. Ann. Mat. Pura Appl. 72, 295–304 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Piccinini, L.C.: Proprietà di inclusione e interpolazione tra spazi di Morrey e loro generalizzazioni. Tesi di perfezionamento, Scuola Normale Superiore Pisa, 1–153 (1969)Google Scholar
  39. 39.
    Poelhuis, J., Torchinsky, A.: Weighted local estimates for singular integral operators. Trans. Am. Math. Soc. 367, 7957–7998 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rosenthal, M.: Mapping properties of operators in Morrey spaces and wavelet isomorphisms in related Morrey smoothness spaces. PhD Thesis, Jena (2013)Google Scholar
  41. 41.
    Rosenthal, M.: Local means, wavelet bases and wavelet isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Math. Nachr. 286(1), 59–87 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rosenthal, M., Schmeisser, H.-J.: On the boundedness of singular integrals in Morrey spaces and its preduals, J. Fourier Anal. Appl., 22(2), 462–490, 2016. Erratum. J. Fourier Anal. Appl. 22(2), 491 (2016)Google Scholar
  43. 43.
    Rosenthal, M., Schmeisser, H.-J.: The boundedness of operators in Muckenhoupt weighted Morrey spaces via extrapolation techniques and duality. Rev. Mat. Complut. 29(3), 623–657 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rosenthal, M., Triebel, H.: Calderón–Zygmund operators in Morrey spaces. Rev. Mat. Complut. 27, 1–11 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Rosenthal, M., Triebel, H.: Morrey spaces, their duals and preduals. Rev. Mat. Complut. 28, 1–30 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Rubio de Francia, J.L.: Factorization and extrapolation of weights. Bull. Am. Math. Soc. New Ser. 7, 393–395 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rubio de Francia, J.L.: Estimates for some square functions of Littlewood–Paley type. Publ. Sec. Mat. Univ. Autòn. Barc. 27(2), 81–108 (1983)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Rubio de Francia, J.L.: Factorization theory and \(A_p\) weights. Am. J. Math. 106, 533–547 (1984)CrossRefzbMATHGoogle Scholar
  49. 49.
    Rubio de Francia, J.L.: A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat. Iberoam. 1(2), 1–14 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62(1), 7–48 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Rychkov, V.S.: Littlewood–Paley theory and function spaces with \(A^{{\rm loc}}_p\) weights. Math. Nachr. 224, 145–180 (2001)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Samko, N.: Weighted Hardy and singular operators in Morrey spaces. J. Math. Anal. Appl. 350, 56–72 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Sato, S.: A note on weighted estimates for certain classes of pseudo-differential operators. Rocky Mt. J. Math. 35(1), 267–284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Shi, S., Fu, Z., Zhao, F.: Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations. J. Inequal. Appl. 2013, Article ID 390 (2013)Google Scholar
  55. 55.
    Shi, X.L., Sun, Q.Y.: Weighted norm inequalities for Bochner–Riesz operators and singular integral operators. Proc. Am. Math. Soc. 116(3), 665–673 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  57. 57.
    Tanaka, H.: Two-weight norm inequalities on Morrey spaces. Ann. Acad. Sci. Fenn. Math. 40, 773–791 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Torchinsky, A., Wang, S.: A note on the Marcinkiewicz integral. Colloq. Math. 60–61, 235–243 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. European Mathematical Society, Zürich (2013)CrossRefzbMATHGoogle Scholar
  60. 60.
    Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations. European Mathematical Society, Zürich (2014)zbMATHGoogle Scholar
  61. 61.
    Triebel, H.: The Fatou property in function spaces, heat kernels, admissible norms and mapping properties. In: Function Spaces and Inequalities. Springer, Singapore (2017)Google Scholar
  62. 62.
    Vargas, A.M.: Weighted weak type (1,1) bounds for rough operators. J. Lond. Math. Soc. (2) 54(2), 297–310 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Wang, H.: Boundedness of \(\theta \)-type Calderón–Zygmund operators and commutators in the generalized weighted Morrey spaces, J. Funct. Spaces, Art. ID 1309348 (2016)Google Scholar
  64. 64.
    Watson, D.K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60(2), 389–399 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Wilson, M.: Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008)Google Scholar
  66. 66.
    Wu, H.: On multilinear oscillatory singular integrals with rough kernels. J. Math. Anal. Appl. 296(2), 479–494 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Yabuta, K.: Calderón–Zygmund operators and pseudodifferential operators. Commun. Partial Differ. Equ. 10(9), 1005–1022 (1985)CrossRefzbMATHGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2017

Authors and Affiliations

  1. 1.Departamento de Matemáticas/Matematika sailaUniversidad del País Vasco/Euskal Herriko UnibertsitateaBilbaoSpain

Personalised recommendations