Advertisement

Numerical Investigation of the Effect of Heating Rate on InGaSb Crystal Growth under Zero-Gravity

  • Xin Jin
  • Atsushi SekimotoEmail author
  • Yasunori Okano
  • Takuya Yamamoto
  • Yasuhiro Hayakawa
  • Yuko Inatomi
  • Sadik Dost
Original Article
  • 11 Downloads

Abstract

In order to determine the optimum heating rate for the planned microgravity experiments on the International Space Station (ISS), axisymmetric 2D numerical simulations were performed under the zero-gravity condition to investigate the effect of heating rate on the dissolution process of the seed and feed crystals in a sandwich system of InGaSb. The simulation results showed that the dissolution lengths of the seed and feed crystals are strongly affected by heating rate. A higher heating rate leads to larger feed and seed dissolutions. Simulation results suggest that the microgravity experiments on the ISS should not adopt a heating rate higher than 3.6 K/h in order to avoid a complete dissolution of the feed and/or seed crystals in this sandwich system.

Keywords

Crystal growth Numerical simulation ISS InGaSb Heat and mass transfer 

Notes

Acknowledgements

In this research work we used the supercomputer of ACCMS, Kyoto University (project ID: EX18608).

References

  1. Arai, Y., Kinoshita, K., Tsukada, T., Kubo, M., Abe, K., Sumioka, S., Baba, S., Inatomi, Y.: Study of SiGe crystal growth Interface processed in microgravity. Cryst. Growth Des. 18, 3697–3703 (2018)CrossRefGoogle Scholar
  2. Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M.: Springer Handbook of Crystal Growth. Springer Science & Business Media. Springer-Verlag Berlin Heidelberg (2010)Google Scholar
  3. Duffar, T., Serrano, M., Moore, C., Camassel, J., Contreras, S., Dusserre, P., Rivoallant, A., Tanner, B.: Bridgman solidification of GaSb in space. J. Cryst. Growth. 192(1–2), 63–72 (1998)CrossRefGoogle Scholar
  4. Hayakawa, Y., Okano, Y., Hirata, A., Imaishi, N., Kumagiri, Y., Zhong, X., Xie, X., Yuan, B., Wu, F., Liu, H., Yamaguchi, T., Kumagawa, M.: Experimental and numerical investigations on dissolution and recrystallization processes of GaSb/InSb/GaSb under microgravity and terrestrial conditions. J. Cryst. Growth. 213(1–2), 40–50 (2000)CrossRefGoogle Scholar
  5. Inatomi, Y., Sakata, K., Arivanandhan, M., Rajesh, G., Kumar, V.N., Koyama, T., Momose, Y., Ozawa, T., Okano, Y., Hayakawa, Y.: Growth of InxGa1-xSb alloy semiconductor at the international space station (ISS) and comparison with terrestrial experiments. NPJ Microgravity. 1(1), 15011 (2015)CrossRefGoogle Scholar
  6. Jiang, H., Zhao, J.: Continuous solidification of immiscible alloys and microstructure control. Microgravity Sci. Tech. 30(6), 747–760 (2018)CrossRefGoogle Scholar
  7. Jin, X., Mirsandi, H., Yamamoto, T., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: Numerical simulation of InGaSb crystals growth under microgravity onboard the international space station. In: JJAP Conf. Proc. 4, 011107 (2016)Google Scholar
  8. Jin, X., Yamamoto, T., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: A numerical study on the dissolution process of InGaSb under zero gravity. Int. J. Microgravity Sci. Appl. 34(2), 340206 1–340206 7 (2017)Google Scholar
  9. Kinoshita, K., Arai, Y., Inatomi, Y., Tsukada, T., Miyata, H., Tanaka, R., Abe, K., Sumioka, S., Kubo, M., Baba, S.: SiGe crystal growth by the travelling Liquidus-zone method aboard the international Space Station. Int. J. Microgravity Sci. Appl. 33(2), 330213 1–330213 5 (2016)Google Scholar
  10. Kumar, V.N., Arivanandhan, M., Rajesh, G., Koyama, T., Momose, Y., Sakata, K., Ozawa, T., Okano, Y., Inatomi, Y., Hayakawa, Y.: Investigation of directionally solidified InGaSb ternary alloys from Ga and Sb faces of GaSb (111) under prolonged microgravity at the international Space Station. NPJ Microgravity. 2(16026), (2016)Google Scholar
  11. Kumar, V.N., Hayakawa, Y., Arivanandhan, M., Rajesh, G., Koyama, T., Momose, Y., Ozawa, T., Okano, Y., Inatomi, Y.: Orientation-dependent dissolution and growth kinetics of InxGa1-xSb by vertical gradient freezing method under microgravity. J. Cryst. Growth. 496, 15–17 (2018)CrossRefGoogle Scholar
  12. Mirsandi, H., Yamamoto, T., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: A numerical study on the growth process of InGaSb crystals under microgravity with interfacial kinetics. Microgravity Sci. Tech. 27(5), 313–320 (2015)CrossRefGoogle Scholar
  13. Nobeoka, M., Takagi, Y., Okano, Y., Hayakawa, Y., Dost, S.: Numerical simulation of InGaSb crystal growth by temperature gradient method under normal-and micro-gravity fields. J. Cryst. Growth. 385, 66–71 (2014)CrossRefGoogle Scholar
  14. Schwabe, M., Du, C.-R., Huber, P., Lipaev, A.M., Molotkov, V.I., Naumkin, B.N., Zhdanov, S.K., Zhukhovitskii, D.I., Fortov, V.E., Thomas, H.M.: Latest results on complex plasmas with the PK-3 plus laboratory on board the international Space Station. Microgravity Sci. Tech. 30(5), 581–589 (2018)CrossRefGoogle Scholar
  15. Stringfellow, G.: Calculation of ternary phase diagrams of III-V systems. J. Phys. Chem. Solids. 33(3), 665–677 (1972)CrossRefGoogle Scholar
  16. Takagi, Y., Suzuki, N., Okano, Y., Tanaka, A., Hayakawa, Y., Dost, S.: Numerical simulation of the dissolution process of GaSb into InSb melt under normal and microgravity conditions. Trans. JSASS, Aerospace Tech. Jpn. 10(ists28), Ph 1–Ph 7 (2012)Google Scholar
  17. Yamamoto, T., Mirsandi, H., Jin, X., Takagi, Y., Okano, Y., Inatomi, Y., Hayakawa, Y., Dost, S.: Numerical simulation model by volume averaging for the dissolution process of GaSb into InSb in a sandwich system. Num. Heat Transfer, Part B: Fundam. 70(5), 441–458 (2016)CrossRefGoogle Scholar
  18. Yu, J., Liu, Y., Pan, X., Zhao, H., Kumar, V.N., Arivanandhan, M., Momose, Y., Hayakawa, Y., Zhang, X., Luo, X., Okano, Y., Inatomi, Y.: A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese recovery satellite SJ-10. Microgravity Sci. Tech. 28(2), 143–154 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering ScienceOsaka UniversityOsakaJapan
  2. 2.Research Institute of ElectronicsShizuoka UniversityShizuokaJapan
  3. 3.Graduate School of Environmental StudiesTohoku UniversityMiyagiJapan
  4. 4.School of Physical SciencesSOKENDAISagamiharaJapan
  5. 5.ISAS, Japan Aerospace Exploration AgencySagamiharaJapan
  6. 6.Crystal Growth LaboratoryUniversity of VictoriaVictoriaCanada

Personalised recommendations