Advertisement

Microgravity Science and Technology

, Volume 31, Issue 2, pp 231–240 | Cite as

Three-Dimensional Numerical Simulation on Marangoni Convection in a Sessile Water Droplet Evaporating in its Vapor at Low Pressure

  • Yu Zhang
  • You-Rong LiEmail author
  • Jia-Jia Yu
  • Qiu-Sheng Liu
Original Article
  • 63 Downloads

Abstract

In order to understand the effect of Marangoni convection on the evaporation rate and the flow pattern, we performed a series of three-dimensional numerical simulations on evaporation process of sessile water droplet by introducing a kinetic model. Substrate temperature and the ratio of vapor pressure varied from 299 K to 308 K and from 0.92 to 0.99, respectively. The variation range of contact angle θ was between 9.15° and 120°. Results show that the axisymmetric ring-shape temperature distribution on droplet free surface transforms into a serrated temperature distribution because of the enhancing Marangoni convection with the increase of substrate temperature. In addition, with the decrease of vapor pressure, the total evaporation rate on free surface will be increased and the Marangoni effect will be enhanced. The flow pattern is axisymmetric at 90o ≤ θ ≤ 120o when the substrate temperature is fixed. However, it shifts to a multi-cellular pattern with the decrease of contact angle as a result of the competition between Marangoni flow and the evaporation. Additionally, the total evaporation rate increases with the increase of contact angle when contact angle is above 60o, but when the contact angle is below 60o, the trend is reverted. The temperature distribution becomes distinct at a small contact angle.

Keywords

Sessile droplet Evaporation Marangoni convection Kinetic model Numerical simulation 

Nomenclature

a

thermal diffusivity, m2/s

g

gravity acceleration, m/s2

h

height of the droplet, m

HL

latent heat of vaporization, J/kg

J

evaporation rate, kg/(m2·s)

kl

thermal conductivity, W/(m·K)

lc

capillary length, m

M

molar mass of the evaporating liquid, g/mol

P

pressure, Pa

qm

evaporation flux, kg/s

r

contact radius, m

R

universal gas constant, J/(mol·K)

t

time, s

T

temperature, K

U, V, W

velocity components along three directions, m/s

V

velocity vector

Greek Symbols

α

accommodation coefficient

η

pressure ratio

ν

kinematic viscosity, m2/s

θ

contact angle, o

σ

surface tension, N/m

ρ

density of working liquid, kg/m3

Subscripts

ave

average

i

liquid-vapor interface

s

saturated

v

vapor

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 11532015), Chongqing University Post-graduates Innovation Project (Grant No: CYS18041) and the Fundamental Research Funds for the Central Universities (No. 2018CDXYDL0001).

References

  1. Barash, L.Y.: Marangoni convection in an evaporating droplet: analytical and numerical descriptions. Int. J. Heat Mass Transf. 102, 445–454 (2016)Google Scholar
  2. Bouchenna, C., Saada, M.A., Chikh, S., Tadrist, L.: Investigation of thermo-capillary flow inside an evaporating pinned water droplet. Interfacial Phenomena and Heat Transfer. 3(2), 185–201 (2015)Google Scholar
  3. Brutin, D., Zhu, Z.Q., Rahli, O., Xie, J.C., Liu, Q.S., Tadrist, L.: Evaporation of ethanol drops on a heated substrate under microgravity conditions. Microgravity Sci. Technol. 22(3), 387–395 (2010)Google Scholar
  4. Chen, X., Zhu, Z.Q., Liu, Q.S., Wang, X.W.: Thermodynamic behaviors of macroscopic liquid droplets evaporation from heated substrates. Microgravity Sci. Technol. 27(5), 353–360 (2015)Google Scholar
  5. Chen, X., Wang, X., Chen, P.G., Liu, Q.S.: Thermal effects of substrate on Marangoni flow in droplet evaporation: response surface and sensitivity analysis. Int. J. Heat Mass Transf. 113, 354–365 (2017)Google Scholar
  6. Chen, X., Wang, X., Chen, P.G., Liu, Q.S.: Determination of diffusion coefficient in droplet evaporation experiment using response surface method. Microgravity Sci. Technol. 30(5), 675–682 (2018)Google Scholar
  7. Cheng, W.L., Han, F.Y., Liu, Q.N., Zhao, R., Fan, H.L.: Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling. Energy. 36(1), 249–257 (2011)Google Scholar
  8. Cheng, W.L., Zhang, W.W., Chen, H., Hu, L.: Spray cooling and flash evaporation cooling: the current development and application. Renew. Sust. Energ. Rev. 55, 614–628 (2016)Google Scholar
  9. Crafton, E.F., Black, W.Z.: Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces. Int. J. Heat Mass Transf. 47(6), 1187–1200 (2004)Google Scholar
  10. D’Agaro, P., Croce, G., Cortella, G.: Numerical simulation of glass doors fogging and defogging in refrigerated display cabinets. Appl. Therm. Eng. 26(16), 1927–1934 (2006)Google Scholar
  11. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Written, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature. 389(6653), 827–829 (1997)Google Scholar
  12. Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., Sefiane, K.: The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623(623), 329–351 (2009a)zbMATHGoogle Scholar
  13. Dunn, G.J., Wilson, S.K., Duffy, B.R., Sefiane, K.: Evaporation of a thin droplet on a thin substrate with a high thermal resistance. Phys. Fluids. 21(5), 336–181 (2009b)zbMATHGoogle Scholar
  14. Ghasemi, H., Ward, C.A.: Energy transport by thermocapillary convection during sessile-water-droplet evaporation. Phys. Rev. Lett. 105(13), 136102 (2010)Google Scholar
  15. Girard, F., Antoni, M.: Influence of substrate heating on the evaporation dynamics of pinned water droplets. Langmuir 24(20), 11342 (2008), 11345Google Scholar
  16. Girard, F., Antoni, M., Faure, S., Steinchen, A.: Numerical study of the evaporating dynamics of a sessile water droplet. Microgravity Sci. Technol. 18(3–4), 42–46 (2006)Google Scholar
  17. Girard, F., Antoni, M., Faure, S., Steinchen, A.: Influence of heating temperature and relative humidity in the evaporation of pinned droplets. Colloid Surf. A-Physicochem. Eng. Asp. 323(1–3), 36–49 (2008)Google Scholar
  18. Haschke, T., Wiechert, W., Graf, K., Bonaccurso, E., Li, G., Suttmeier, F.T.: Evaporation of solvent microdrops on polymer substrates: from well controlled experiments to mathematical models and back. Nanoscale Microscale Thermophys. Eng. 11(1–2), 31–41 (2007)Google Scholar
  19. Hu, H., Larson, R.G.: Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B. 106(6), 1334–1344 (2002)Google Scholar
  20. Hu, H., Larson, R.G.: Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir. 21(9), 3963–3971 (2005)Google Scholar
  21. Kelly, P.L.: Vapor distribution above an evaporating sessile drop. Int. J. Heat Mass Transf. 65, 165–172 (2013)Google Scholar
  22. Liu, L., Mi, M.L.: Theoretical investigation on rapid evaporation of a saline droplet during depressurization. Microgravity Sci. Technol. 25(5), 295–302 (2014)Google Scholar
  23. Marek, R., Straub, J.: Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 44(1), 39–53 (2001)zbMATHGoogle Scholar
  24. Nguyen, T.A.H., Nguyen, A.V., Hampton, M.A., Xu, Z.P., Huang, L.B., Rudolph, V.: Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem. Eng. J. 69(1), 522–529 (2010)Google Scholar
  25. Park, J., Moon, J.: Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir. 22(8), 3506–3513 (2006)Google Scholar
  26. Pericet-Camara, R., Bonaccurso, E., Graf, K.: Microstructuring of polystyrene surfaces with nonsolvent sessile droplets. Chem. Phys. Chem. 9(12), 1738–1746 (2010)Google Scholar
  27. Persad, A.H., Ward, C.A.: Expressions for the evaporation and condensation coefficients in the hertz-Knudsen relation. Chem. Rev. 116(14), 7727–7767 (2016)Google Scholar
  28. Picknett, R.G., Bexon, R.: Evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61(2), 336–350 (1977)Google Scholar
  29. Sefiane, K.: On the formation of regular patterns from drying droplets and their potential use for bio-medical applications. J. Bionic Eng. 7(4), S82–S93 (2010)Google Scholar
  30. Sefiane, K., Bennacer, R.: An expression for droplet evaporation incorporating thermal effects. J. Fluid Mech. 667(1), 260–271 (2011)zbMATHGoogle Scholar
  31. Sefiane, K., David, S., Dunn, G.: Analysis of the diffusion model for sessile drops evaporating under reduced pressure and the influence of the properties of the substrate and ambient atmosphere. Epigenetics. 7(10), 1125–1132 (2007)Google Scholar
  32. Semenov, S., Starov, V.M., Rubio, R.G., Agogo, H., Velarde, M.G.: Evaporation of sessile water droplets: universal behaviour in presence of contact angle hysteresis. Colloid Surf. A-Physicochem. Eng. Asp. 391(1–3), 135–144 (2012a)zbMATHGoogle Scholar
  33. Semenov, S., Starov, V.M., Rubio, R.G., Velarde, M.G.: Computer simulations of evaporation of pinned sessile droplets: influence of kinetic effects. Langmuir. 28(43), 15203–15211 (2012b)Google Scholar
  34. Semenov, S., Carle, F., Medale, M., Brutin, D.: 3D unsteady computations of evaporative instabilities in a sessile drop of ethanol on a heated substrate. Appl. Phys. Lett. 111(24), 241602 (2017)Google Scholar
  35. Sodtke, C., Stephan, P.: Spray cooling on micro structured surfaces. Int. J. Heat Mass Transf. 50(19), 4089–4097 (2007)Google Scholar
  36. Starov, V., Sefiane, K.: On evaporation rate and interfacial temperature of volatile sessile drops. Colloid Surf. A-Physicochem. Eng. Asp. 333(1), 170–174 (2009)Google Scholar
  37. Unsworth, M.H.: Principles of environmental physics. Phys. Today. 5(2), 66 (1974)Google Scholar
  38. Wang, Y.L., Ma, L.R., Xu, X.F., Luo, J.B.: Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect. J. Colloid Interface Sci. 484, 291–297 (2016)Google Scholar
  39. Xu, X.F., Luo, J.B.: Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 91(12), 3972 (2007)Google Scholar
  40. Xu, X.F., Ma, L.R.: Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach. Soft Matter. 5(28), 8614 (2015)Google Scholar
  41. Yang, K., Hong, F.J., Cheng, P.: A fully coupled numerical simulation of sessile droplet evaporation using arbitrary Lagrangian–Eulerian formulation. Int. J. Heat Mass Transf. 70(3), 409–420 (2014)Google Scholar
  42. Ye, S., Wu, C.M., Zhang, L., Li, Y.R., Liu, Q.S.: Evolution of thermal patterns during steady state evaporation of sessile droplets. Exp. Thermal Fluid Sci. 98, 712–718 (2018)Google Scholar
  43. Zhu, Z.Q., Brutin, D., Liu, Q.S., Wang, Y., Mourembles, A., Xie, J.C., Tadrist, L.: Experimental investigation of pendant and sessile drop in microgravity. Microgravity Sci. Technol. 22(3), 339–345 (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yu Zhang
    • 1
  • You-Rong Li
    • 1
    Email author
  • Jia-Jia Yu
    • 1
  • Qiu-Sheng Liu
    • 2
  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, School of Energy and Power EngineeringChongqing UniversityChongqingChina
  2. 2.Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations