Advertisement

Microgravity Science and Technology

, Volume 31, Issue 3, pp 241–248 | Cite as

Pulsating Heat Pipe Simulations: Impact of PHP Orientation

  • Iaroslav Nekrashevych
  • Vadim S. NikolayevEmail author
Original Article
  • 91 Downloads
Part of the following topical collections:
  1. Heat pipe systems for thermal management in space

Abstract

The pulsating (called also oscillating) heat pipe (PHP) is a simple capillary tube bent in meander and filled with a two-phase fluid. We discuss numerical simulations of the 10-turn copper-water PHP under vertical favorable (bottom-heated), vertical unfavorable (top-heated), and horizontal orientations. Within the present approach, the horizontal orientation is equivalent to the microgravity conditions. The simulations are performed with the in-house CASCO software. The time-averaged spatial distribution of the liquid plugs inside the PHP is influenced by gravity. This affects the overall PHP performance. We show that, independently of the PHP orientation, contribution of the latent heat transfer is large with respect to the sensible heat transfer. We discuss the phenomena occurring inside the PHP during startup and the stable regimes (intermittent and continuous oscillations followed by dryout).

Keywords

Pulsating heat pipe Oscillation Liquid films Phase change Simulation 

Nomenclature

d

tube inner diameter (m)

F

evaporator coverage fraction by a phase

g

gravity acceleration (m2/s)

L

length (m)

\(P, \dot Q\)

power (W)

Rth

heat transfer resistance (K/W)

T

temperature (K)

t

time (s)

Greek symbols

ϕ

volume fraction of liquid in PHP

Superscripts

lat

latent

sens

sensible

Subscripts

a

adiabatic

c

condenser

d

dry

e

evaporator

f

liquid film

fb

feedback section (vertical in Fig. 1)

l

liquid plug

Subscripts

nucl

nucleated

sat

at saturation

thr

threshold

Notes

Acknowledgments

The financial contribution of ESA within MAP INWIP is acknowledged. This work has been presented during the joint 19th International Heat Pipe Conference and 13th International Heat Pipe Symposium, Pisa, Italy (2018).

References

  1. Gu, J., Kawaji, M., Futamata, R.: Microgravity performance of micro pulsating heat pipes. Microgravity Sci. Technol. 16(1), 181–185 (2005).  https://doi.org/10.1007/BF02945972 CrossRefGoogle Scholar
  2. Holley, B., Faghri, A.: Analysis of pulsating heat pipe with capillary wick and varying channel diameter. Int. J. Heat Mass Transfer 48(13), 2635–2651 (2005).  https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.013 CrossRefzbMATHGoogle Scholar
  3. Jo, J., Kim, J., Kim, S.J.: Experimental investigations of heat transfer mechanisms of a pulsating heat pipe. Energy Convers. Manage. 181, 331–341 (2019).  https://doi.org/10.1016/j.enconman.2018.12.027 CrossRefGoogle Scholar
  4. Karthikeyan, V., Khandekar, S., Pillai, B., Sharma, P.K.: Infrared thermography of a pulsating heat pipe: flow regimes and multiple steady states. Appl. Therm. Eng. 62(2), 470–480 (2014).  https://doi.org/10.1016/j.applthermaleng.2013.09.041 CrossRefGoogle Scholar
  5. Lips, S., Bensalem, A., Bertin, Y., Ayel, V., Romestant, C., Bonjour, J.: Experimental evidences of distinct heat transfer regimes in pulsating heat pipes (PHP). Appl. Therm. Eng. 30(8-9), 900–907 (2010).  https://doi.org/10.1016/j.applthermaleng.2009.12.020 CrossRefGoogle Scholar
  6. Mameli, M., Marengo, M., Zinna, S.: Numerical investigation of the effects of orientation and gravity in a closed loop pulsating heat pipe. Microgravity Sci. Technol. 24, 79–92 (2012).  https://doi.org/10.1007/s12217-011-9293-2 CrossRefzbMATHGoogle Scholar
  7. Mangini, D., Mameli, M., Georgoulas, A., Araneo, L., Filippeschi, S., Marengo, M.: A pulsating heat pipe for space applications: ground and microgravity experiments. Int. J. Therm. Sci. 95, 53–63 (2015).  https://doi.org/10.1016/j.ijthermalsci.2015.04.001 CrossRefGoogle Scholar
  8. Marengo, M., Nikolayev, V.: Pulsating heat pipes: experimental analysis, design and applications. In: Thome, J.R. (ed.) Encyclopedia of Two-Phase Heat Transfer and Flow IV, vol. 1: Modeling of Two-Phase Flows and Heat Transfer, pp. 1 – 62. World Scientific. http://www.worldscientific.com/worldscibooks/10.1142/10831 (2018)
  9. Nekrashevych, I., Nikolayev, V.S.: Effect of tube heat conduction on the pulsating heat pipe start-up. Appl. Therm. Eng. 117, 24–29 (2017).  https://doi.org/10.1016/j.applthermaleng.2017.02.013 CrossRefGoogle Scholar
  10. Nikolayev, V., Marengo, M.: Pulsating heat pipes: basics of functioning and numerical modeling. In: Thome, J.R. (ed.) Encyclopedia of Two-Phase Heat Transfer and Flow IV, vol. 1: Modeling of Two-Phase Flows and Heat Transfer, pp. 63–139. World Scientific. http://www.worldscientific.com/worldscibooks/10.1142/10831 (2018)
  11. Nikolayev, V.S.: A dynamic film model of the pulsating heat pipe. J. Heat Transfer 133(8), 081504 (2011).  https://doi.org/10.1115/1.4003759 CrossRefGoogle Scholar
  12. Nikolayev, V.S.: Oscillatory instability of the gas-liquid meniscus in a capillary under the imposed temperature difference. Int. J. Heat Mass Transfer 64, 313–321 (2013).  https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.043 CrossRefGoogle Scholar
  13. Nikolayev, V.S., Nekrashevych, I.: Vapor thermodynamics and fluid merit for pulsating heat pipe. Proc. 19th Int. Heat Pipe Conf. and 13th Int. Heat Pipe Symp., Pisa, Italy (2018)Google Scholar
  14. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002).  https://doi.org/10.1017/CBO9780511803260 CrossRefzbMATHGoogle Scholar
  15. Shafii, M.B., Faghri, A., Zhang, Y.: Thermal modeling of unlooped and looped pulsating heat pipes. J. Heat Transfer 123(6), 1159–1172 (2001).  https://doi.org/10.1115/1.1409266 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Service de Physique de l’Etat Condensé, CEA, CNRSUniversité Paris–Saclay, CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations