Advertisement

Microgravity Science and Technology

, Volume 31, Issue 3, pp 249–259 | Cite as

Start-Up and Operation of a 3D Hybrid Pulsating Heat Pipe on Board a Sounding Rocket

  • Mauro MameliEmail author
  • Stefano Piacquadio
  • Alessandro Simone Viglione
  • Andrea Catarsi
  • Carlo Bartoli
  • Marco Marengo
  • Paolo Di Marco
  • Sauro Filippeschi
Original Article
Part of the following topical collections:
  1. Heat Pipe Systems for Thermal Management in Space

Abstract

A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer device to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a Pulsating Heat Pipe. This work presents the results obtained on such a hybrid device heated at 200 W both on board a sounding rocket (ESA REXUS 22, microgravity period ~120 s), and on ground in vertical and anti-gravity orientation. Since no steady state occurred in microgravity conditions, the comparison between flight and ground data focuses on the startup phenomenon, whereas the thorough ground test campaign describes the limits and performances of the device working in thermosyphon mode. The expected thermal behavior in microgravity conditions is between that of a purely conductive tube in anti-gravity conditions on ground and that of a gravity assisted thermosyphon. Since a microgravity period of approximately 120 s is not enough to reach a pseudo steady state regime, further investigation on a longer-term weightless condition is mandatory.

Keywords

Pulsating heat pipe 3D Sounding rocket Start-up 

Nomenclature

Bo

Bond Number, [-]

d

Diameter, [m]

g

Gravity Acceleration, [m/s2]

Ga

Garimella Number, [-]

Re

Reynolds Number, [-]

T

Temperature, [°C]

U

Velocity, [m/s]

μ

Dynamic Viscosity, [Pa∙s]

ρ

Density, [kg/m3]

σ

Tension Surface, [N/m]

Subscripts

Bo

Bond Number

cr

Critical

Ga

Garimella Number

l

Liquid Phase

v

Vapor Phase

Notes

Acknowledgments

The present work has been carried out as part of the REXUS BEXUS program, supported by European space agency (ESA), German Aerospace Research Establishment (DLR) and Swedish National Space Board (SNSB). The project was cofounded with the ESA MAP INWIP project budget the school of engineering and all the technical sponsors (http://www.uphos.ing.unipi.it/it/supporters/), and supported by the International Scientific Team on Pulsating Heat Pipes. Special thanks to the UPHOS team, to the technicians of the University of Pisa Roberto Manetti, Massimo Ciampalini, Franco Peticca, Davide Della Vista for their essential contribution. The authors would like to thank Alessandro Signorini (INFIBRA Technology) and Lorenzo Caporale and Marco La Foresta (BOYD/AAVID Thermalloy) for the great help.

References

  1. Akachi H.: Structure of a heat pipe, US Pantent 4.921.041, (1990).Google Scholar
  2. Akachi H.: Structure of a micro heat pipe, US Patent 5.219.020, (1993).Google Scholar
  3. Ayel, V., Araneo, L., Scalambra, A., Mameli, M., Romestant, C., Piteau, A., Marengo, M., Filippeschi, S., Bertin, Y.: Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force. Int. J. Therm. Sci. 96, 23–34 (2015)CrossRefGoogle Scholar
  4. Ayel, V., Araneo, L., Marzorati, P., Romestant, A., Bertin, Y., Marengo, M.: Visualization of flow patterns in closed loop flat plate pulsating heat pipe acting as hybrid Thermosyphons under various gravity levels. Heat Transfer Engineering. 1–11 (2018), In press).  https://doi.org/10.1080/01457632.2018.1426244.
  5. Baldassari, C., Marengo, M.: Flow boiling in microchannels and microgravity. Prog. Energy Combust. Sci. 39, 1–36 (2013)CrossRefGoogle Scholar
  6. Creatini, F., Guidi, G.M., Belfi, F., Cicero, G., Fioriti, D., Di Prizio, D., Piacquadio, S., Becatti, G., Orlandini, G., Frigerio, A., Fontanesi, S., Nannipieri, P., Rognini, M., Morganti, N., Filippeschi, S., Di Marco, P., Fanucci, L., Baronti, F., Manzoni, M., Mameli, M., Marengo, M.: Pulsating heat pipe only for space: results of the REXUS 18 sounding rocket campaign, XXXIII UIT congress, L’Aquila, Italy. J. Phys. Conf. Ser. 655, 012042 (2015)CrossRefGoogle Scholar
  7. De Paiva, K.V., Mantelli, M.B.H., Slongo, L.K., Burg, S.J.: Experimental tests of mini heat pipe, pulsating heat pipe and heat spreader under microgravity conditions aboard suborbital rockets, Proc. of the 15th IHPC, Clemson, South Carolina, USA, (2010)Google Scholar
  8. De Paiva, K.V., Mantelli, M.B.H., Florez, J.P.M., Nuernberg, G.G.V.: Mini Heat Pipe Experiments under Microgravity Conditions. What Have we Learned? Proc. of the 17th IHPC, Kanpur, India, (2013)Google Scholar
  9. Gilmore, D. G.: Spacecraft Control Handbook, Fundamental Technologies, Second Edition, Vol. 1, The Aerospace Corp., AIAA Publ., (2002).Google Scholar
  10. Gu, J., Kawaji, M., Futamata, R.: Effects of gravity on the performance of pulsating heat pipes. J. Thermophys. Heat Trans. 18, 370–378 (2004)CrossRefGoogle Scholar
  11. Gu, J., Kawaji, M., Futamata, R.: Microgravity performance of micro pulsating heating pipe. Micrograv. Sci. Technol. 16, 179–183 (2005)CrossRefGoogle Scholar
  12. Kew, P.A., Cornwell, K.: Correlations for the prediction of boiling heat transfer in small-diameter channels. Appl. Therm. Eng. 17, 705–715 (1997)CrossRefGoogle Scholar
  13. Mameli, M., Araneo, L., Filippeschi, S., Marelli, M., Testa, R., Marengo, M.: Thermal performance of a closed loop pulsating heat pipe under a variable gravity force. Int. J. Ther. Sci. 80, 11–22 (2014)CrossRefGoogle Scholar
  14. Mameli, M., Mangini, D., Vanoli, G., Filippeschi, S., Araneo, L., Marengo, M.: Advanced multi-evaporator loop Thermo-syphon. Energy. 112, 562–573 (2016)CrossRefGoogle Scholar
  15. Mangini, D., Mameli, M., Geourgoulas, A., Araneo, L., Filippeschi, S., Marengo, M.: A pulsating heat pipe for space applications: ground and microgravity experiments. Int. J. Therm. Sci. 95, 53–63 (2015)CrossRefGoogle Scholar
  16. Mangini, D., Mameli, M., Fioriti, D., Araneo, L., Filippeschi, S., Marengo, M.: Hybrid pulsating heat pipe for space applications with non-uniform heating patterns: ground and microgravity experiments. App. Therm. Eng. 126, 1029–1043 (2017)CrossRefGoogle Scholar
  17. Nannipieri P., Anichini M., Barsocchi L, Becatti G., Buoni L., Celi F., Catarsi A., Di Giorgio P., Fattibene P. Ferrato E., Guardati P., Mancini E., Meoni G., Nesti F., Piacquadio S., Pratelli E., Quadrelli L., Viglione A. S., Zanaboni F., Mameli M., Baronti F., Fanucci L., Marcuccio S., Bartoli C., Di Marco P., Bianco N., Marengo M., Filippeschi S.: U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on Board REXUS 22, 34th UIT Conference 4–6 July 2016, Ferrara, Italy.Google Scholar
  18. Nannipieri P., Anichini M., Barsocchi L, Becatti G., Buoni L., Celi F., Catarsi A., Di Giorgio P., Fattibene P. Ferrato E., Guardati P., Mancini E., Meoni G., Nesti F., Piacquadio S., Pratelli E., Quadrelli L., Viglione A. S., Zanaboni F., Mameli M., Baronti F., Fanucci L., Marcuccio S., Bartoli C., Di Marco P., Bianco N., Marengo M., Filippeschi S.: The U-PHOS experience within the ESA studentREXUS/BEXUS programme: a real space hands-on opportunity, IEEE EDUCON Conference 2017a.Google Scholar
  19. Nannipieri P., Anichini M., Barsocchi L, Becatti G., Buoni L., Celi F., Catarsi A., Di Giorgio P., Fattibene P. Ferrato E., Guardati P., Mancini E., Meoni G., Nesti F., Piacquadio S., Pratelli E., Quadrelli L., Viglione A. S., Zanaboni F., Mameli M., Baronti F., Fanucci L., Marcuccio S., Bartoli C., Di Marco P., Bianco N., Marengo M., Filippeschi S.: Upgraded Pulsating Heat Pipe Only for Space (U-Phos): Results of the 22nd Rexus Sounding Rocket Campaign, 9th ExHFT, 12–15 June, 2017b, Iguazu Falls, Brazil.Google Scholar
  20. Nannipieri, P., Meoni, G., Nesti, F., Mancini, E., Celi, F., Quadrelli, L., Ferrato, E., Guardati, P., Baronti, F., Fanucci, L., Signorini, A., Nannipieri, T.: Application of FBG sensors to temperature measurement on board of the REXUS 22 sounding rocket in the framework of the U-PHOS project, 4th IEEE international workshop on metrology for AeroSpace, MetroAeroSpace 2017; Padua; Italy; 21–23 June 2017c.Google Scholar
  21. Taft, B.S., Laun, F.F., Smith, S.: Microgravity performance of a structurally embedded oscillating heat pipe. J. Thermophys. Heat Transf. 29(2), 329–337 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of PisaPisaItaly
  2. 2.School of Computing, Engineering and MathematicsUniversity of BrightonBrightonUK

Personalised recommendations