Advertisement

Microgravity Science and Technology

, Volume 31, Issue 2, pp 207–222 | Cite as

Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method

  • Juan Shi
  • Qiang Ma
  • Zhenqian ChenEmail author
Original Article
  • 67 Downloads

Abstract

This paper reports on a study of bubble motion in a regularly spaced pore structure under microgravity using the lattice Boltzmann method (LBM). Initially, a single bubble’s motion is derived; then the simulation is extended for two-bubble dynamics. By considering a gas-liquid two-phase flow, the interaction force (namely the fluid-fluid cohesive force and fluid-solid adhesive force) is derived using the Shan-Chen model with multicomponent single relaxation. This determines the interaction forces governing a single bubble’s dynamics in the porous structure. Then the primary parameters that influence bubble motion are studied, such as the bubble’s diameter, distance between adjacent cells, arrangement between cells, and the effects of flow-field characteristics on single-bubble motion. The simulation developed for single-bubble motion provides the basis for studying a two-bubble system’s motion trajectory and coalescence behavior. By employing the aforementioned analysis, the proposed approach optimizes porous media’s structural parameters under microgravity, resulting in increased bubble movement speed and an enhanced two-phase flow in porous media.

Keywords

Bubble motion Pore structure Lattice Boltzmann method 

Nomenclature

Latin Symbols

c

Lattice unit velocity

cs

Lattice speed of sound

ei

Lattice velocity

fi

Probability density distribution functions

F

Force

g

Lattice gravity

\( {g}_{k\overline{k}} \)

The interaction force strength between the kth and \( {\overline{k}}^{\mathrm{th}} \) component

P

Pressure

t

Time

uk

The variation in velocity

wi

Weight coefficient

x

Position

Greek Symbols

ρ

Density

υ

Kinematic viscosity

δt

Lattice time step

δx

Lattice spacing

τ

Relaxation time

ψ

Weighting function

σ

Surface tension coefficient

Subscripts

l

Liquid

g

Gas

Superscripts

eq

Equilibrium

k

The kth component

Dimensionless Number

Reb

Reynolds number for bubble

Cab

CAPILLARY number for bubble

Г

The density ratio between the liquid and the gas phase

M

The viscosity ratio between the liquid and the gas phase

Eo

Eotvos number

Mo

Morton number

Notes

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (No. 51606037), Natural Science Foundation of Jiangsu Province (No. BK20160687), and China’s Manned Space Program (TZ-1).

References

  1. Abishek, S., King, A.J.C., Narayanaswamy, R.: Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube. Int. J. Multiphase Flow. 74, 148–164 (2015)CrossRefGoogle Scholar
  2. Angelopoulos, A.D., Paunov, V.N., Burganos, V.N., et al.: Lattice Boltzmann simulation of nonideal vapor-liquid flow in porous media. Phys. Rev. E. 57(3), 3237–3245 (1998)CrossRefGoogle Scholar
  3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)CrossRefGoogle Scholar
  4. Chen, L., Kang, Q.J., Mu, Y.T., et al.: A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)CrossRefGoogle Scholar
  5. de Santos, J.M., Melli, T.R., Scriven, L.E.: Mechanics of gas-liquid flow in packedbed reactors. Annu. Rev. Fluid Mech. 23, 233–260 (1991)CrossRefGoogle Scholar
  6. Dhir, V.K., Warrie, G.R., Aktinol, E., et al.: Nucleate pool boiling experiments (NPBX) on the international space station. Microgravity Sci. Technol. 24(5), 307–325 (2012)CrossRefGoogle Scholar
  7. Dong, B., Yan, Y.Y., Li, W., Song, Y.: Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel. Comput. Fluids. 39, 768–779 (2010)MathSciNetCrossRefGoogle Scholar
  8. Dou, Z., Zhou, Z.F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid Flow. 42, 23–32 (2013)CrossRefGoogle Scholar
  9. Eduardo, A., Gopinath, R.W., Vijay, K.D.: Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid. Int. J. Heat Mass Transf. 79, 251–268 (2014)CrossRefGoogle Scholar
  10. Gong, S., Cheng, P.: A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923–4927 (2012a)CrossRefGoogle Scholar
  11. Gong, S., Cheng, P.: Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids. 53, 93–104 (2012b)MathSciNetCrossRefGoogle Scholar
  12. Gong, S., Cheng, P.: Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122–132 (2013)CrossRefGoogle Scholar
  13. Gong, S., Cheng, P.: Numerical investigation of saturated flow boiling in microchannels by the lattice Boltzmann method. Numer Heat Transfer, Part A. 65, 644–661 (2014)CrossRefGoogle Scholar
  14. Gong, W., Yan, Y., Chen, S.: A study on the unphysical mass transfer of SCMP pseudopotential LBM. Int. Commun. Heat Mass Transfer. 123, 815–820 (2018)CrossRefGoogle Scholar
  15. Guo, Z.L., Zheng, C.G.: Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2008)Google Scholar
  16. He, Y.L., Wang, Y., Li, Q.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2008)Google Scholar
  17. Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E. 76(6 Pt 2), 066701 (2007)CrossRefGoogle Scholar
  18. Kannengieser, O., Colin, C., Bergez, W.: Pool boiling with non-condensable gas in microgravity: results of a sounding rocket experiment. Microgravity Sci Technol. 22(3), 447–454 (2010)CrossRefGoogle Scholar
  19. Kornev, K.G., Neimark, A.V., Rozhkov, A.N.: Foam in porous media: thermodynamics and hydrodynamic peculiarities. Adv. Colloid Interf. Sci. 82, 127–187 (1999)CrossRefGoogle Scholar
  20. Li, H., Pan, C., Miller, C.T.: Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E. 72, 026705 (2005)CrossRefGoogle Scholar
  21. Li, Q., Kang, Q.J., Francois, M.M., He, Y.L., Luo, K.H.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)CrossRefGoogle Scholar
  22. Li, Q., Luo, K.H., Kang, Q.J., He, Y.L., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)CrossRefGoogle Scholar
  23. Pan, C., Hilpert, M., Miller, C.T.: Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40(1), W01501 (2004)CrossRefGoogle Scholar
  24. Parmigiani, A., Huber, C., Bachmann, O.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)CrossRefGoogle Scholar
  25. Qi, B.J., Wei, J.J., Wang, X.L., et al.: Influences of wake-effects on bubble dynamics by utilizing micro-pin-finned surfaces under microgravity. Appl. Therm. Eng. 113, 1332–1344 (2017)CrossRefGoogle Scholar
  26. Qian, Y.H., D'Humières, D., Lallemand, P.: Lattice BGK models for Navier-stokes equation. Europhys. Lett. 17(6), 479–484 (1992)CrossRefGoogle Scholar
  27. Qiuand, D.M., Dhir, V.K., Chao, D., et al.: Single-bubble dynamics during pool boiling under low gravity conditions. J. Thermophys. Heat Transf. 16(3), 336–345 (2002)CrossRefGoogle Scholar
  28. Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)CrossRefGoogle Scholar
  29. Sankaranarayanan, K., Shan, X., Kevrekidis, I.G., Sundaresan, S.: Bubble flow simulations with the lattice Boltzmann method [J]. Chem. Eng. Sci. 54(21), 4817–4823 (1999)CrossRefGoogle Scholar
  30. Santarelli, C., Fröhlich, J.: Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Influence of bubble size and bidispersity. Int. J. Multiphase Flow. 81, 27–45 (2016)CrossRefGoogle Scholar
  31. Sun, T., Li, W.: Three-dimensional numerical simulation of nucleate boiling bubble by lattice Boltzmann method. Comput. Fluids. 88, 400–409 (2013)MathSciNetCrossRefGoogle Scholar
  32. Sun, D.K., Zhu, M.F., Wang, J., et al.: Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int. J. Heat Mass Transf. 94, 474–487 (2016)CrossRefGoogle Scholar
  33. Wang, T., Li, H.X., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28(2), 133–142 (2016)CrossRefGoogle Scholar
  34. Wolf-Gladrow, D.A.: Lattice gas cellular automata and lattice Boltzmann models. Lect. Notes Math. 1725, (2000)Google Scholar
  35. Wu, K., Li, Z.D., Zhao, J.F., Li, H.X., Li, K.: Partial nucleate Pool boiling at low heat flux: preliminary ground test for SOBER-SJ10. Microgravity Sci. Technol. 28(2), 165–178 (2016)CrossRefGoogle Scholar
  36. Xue, Y.F., Zhao, J.F., Wei, J.J., Li, J., Guo, D., Wan, S.X.: Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity. Microgravity Sci. Technol. 23(1), 75–85 (2011)CrossRefGoogle Scholar
  37. Zhao, J.F.: Two-phase flow and pool boiling heat transfer in microgravity. Int. J. Multiphase Flow. 36(2), 135–143 (2010)CrossRefGoogle Scholar
  38. Zhao, J.F., Liu, G., Wan, S.X., Yan, N.: Bubble dynamics in nucleate pool boiling on thin wires in microgravity. Microgravity Sci. Technol. 20(2), 81–89 (2008)CrossRefGoogle Scholar
  39. Ziegler, D.P.: Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71(5–6), 1171–1177 (1993)CrossRefGoogle Scholar
  40. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids. 9(6), 1591–1598 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations