Advertisement

Microgravity Science and Technology

, Volume 31, Issue 2, pp 185–194 | Cite as

Heat Transfer in the Samples Solidified in Drop Tubes

  • Edson F. Fumachi
  • Rafael C. ToledoEmail author
  • Plínio I. G. Tenório
  • Chen Y. An
  • Irajá N. Bandeira
Original Article
  • 90 Downloads

Abstract

Drop tubes are one of the most suitable and low cost options to provide a microgravity environment. The study of heat transfer during the free fall of alloy droplets is important to optimize the materials solidification conditions in drop tubes. In this paper the influence of the temperature gradient inside a drop tube using models of heat transfer by convection alone and by convection plus radiation was investigated and applied to the solidification of BiSn eutectic alloys in a 3.5 m length drop tube installed at Associate Laboratory of Sensors and Materials located at Brazilian Space Research Institute (LABAS/INPE). The study showed that the heat transfer model by convection plus radiation obtained better results when compared with experimental data. Besides, the model findings help to predict if the droplet will fully solidify before reaching the end of the drop tube. This is a very important data for short length drop tubes.

Keywords

Microgravity Drop tube Heat transfer 

Notes

Acknowledgments

The author Toledo is grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship of the Brazilian Postdoctoral Program (PNPD).

References

  1. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena, 2nd edn. Wiley, New York (2006)Google Scholar
  2. Cao, L., Cochrane, R.F., Mullis, A.M.: Solidification morphology and phase selection in drop-tube processed Ni–Fe–Si intermetallics. Intermetallics 60, 33–44 (2015).  https://doi.org/10.1016/j.intermet.2015.01.006 CrossRefGoogle Scholar
  3. Çengel, Y. A., Ghajar, A.: Heat and mass transfer: fundamentals and applications, 4th edn. McGraw-Hill Science, New York (2010)Google Scholar
  4. Forgac, J.M., Angus, J.C.: Solidification of metal spheres. Metall. Trans. B 12(B), 413–416 (1981)CrossRefGoogle Scholar
  5. Forgac, J.M., Schur, T.P., Angus, J.C.: Solidification of a sphere: the effects of thermal contraction and density change upon freezing. ASME J. Appl. Mech. 46(1), 83–89 (1979).  https://doi.org/10.1115/1.3424533 CrossRefGoogle Scholar
  6. Freitas, F.E.: Metallic eutectic alloy solidification of BiCd and BiSn in microgravity environment using drop tube. Dissertation (Master Dissertation). INPE Brazil (2009)Google Scholar
  7. Fumachi, E.F.: Drop tube development to modelling and optimization of tin-bismuth eutectic alloy solidification process in microgravity environment. Thesis (PhD Thesis). INPE Brazil (2017)Google Scholar
  8. Ge, L.L., Liu, R.P., Li, G., Ma, M.Z., Wang, W.K.: Solidication of Al - 50 at. % Si alloy in a drop tube. Mater. Sci. Eng. A 385, 128–132 (2004)CrossRefGoogle Scholar
  9. Greer, A.L.: Nucleation and solidification studies using drop-tubes. Mater. Sci. Eng. A 178, 113–120 (1994)CrossRefGoogle Scholar
  10. Grugel, R.N., Brush, L.N.: Solidification dynamics of spherical drops in a free fall environment. Microgravity Sci. Technol. 19(2), 32–44 (2007).  https://doi.org/10.1007/BF02911865 CrossRefGoogle Scholar
  11. Han, X.J., Wang, N., Wei, B.: Rapid eutectic growth under conteinerless condition. Appl. Phys. Lett. 81, 778–780 (2002).  https://doi.org/10.1063/1.1492855 CrossRefGoogle Scholar
  12. Hofmeister, W.H., Robinson, M.B., Bayuzick, R.J.: Undercooling of pure metals in a containerless, microgravity environment. Appl. Phys. Lett. 49, 1342–1344 (1986)CrossRefGoogle Scholar
  13. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of heat and mass transfer, 6th edn. Wiley, New York (2006)Google Scholar
  14. Levitas, V.I., Henson, B.F., Smilowitz, L.B., Asay, B.W.: Solid-solid phase transformation via virtual melting significantly below the melting temperature. Phys. Rev. Lett. 92(23), 235702 (2004).  https://doi.org/10.1103/PhysRevLett.92.235702 CrossRefGoogle Scholar
  15. Li, S., Wu, P., Fukuda, H., Ando, T.: Simulation of the solidification of gas-atomized Sn-5mass%Pb droplets. Mater. Sci. Eng. A 499(1-2), 396–403 (2009).  https://doi.org/10.1016/j.msea.2008.08.041 CrossRefGoogle Scholar
  16. Li, M., Wang, H., Yan, N., Wei, B.: Heat transfer of micro-droplet during free fall in drop tube. Sci. China Technol. Sci. 61(7), 1021–1030 (2018).  https://doi.org/10.1007/s11431-018-9240-x CrossRefGoogle Scholar
  17. McCoy, J.K., Markworth, A.J., Brodkey, R.S., Collings, E.W.: Materials processing in the reduced gravity environment of space, edited by R. H. Doremus and P. C. Nordine. Mat. Res. Soc. Sym. Proc., 87 163 (1987)Google Scholar
  18. McCoy, J.K., Markworth, A.J., Collings, E.W., Brodkey, R.S.: Cooling and solidification of liquid-metal drops in a gaseous atmosphere. J. Mat. Sci. 27, 761–766 (1992)CrossRefGoogle Scholar
  19. Morrison, F.A.: Data correlation for drag coefficient for sphere. Michigan Technological University, Houghton (2010). http://www.chem.mtu.edu/fmorriso/DataCorrelationForSphereDrag2013.pdf. Accessed 20 October 2012Google Scholar
  20. Perepezko, J.H.: Nucleation in undercooled liquids. Mater. Sci. Eng. 65(1), 125–135 (1984).  https://doi.org/10.1007/s12217-014-9384-y CrossRefGoogle Scholar
  21. Poli, A.K.S., Toledo, R.C., An, C.Y., Bandeira, I.N.: Estudo da solidificação da liga eutética de BiSn em ambiente de microgravidade. In: Workshop em engenharia e tecnologia espaciais. 2. (WETE). Anais... São José dos Campos: INPE (2014) http://sid.inpe.br/mtc-m21b/2014/11.19.19.30. Accessed in March 06 (2018)
  22. Sahn, P.R.: Workshop proc. on nucleation-rapid solidification. Foundry Institute, Aachen Institute of Technology, Aachen, 5–8 (1983)Google Scholar
  23. Szekely, J., Fischer, R.J.: On the solidification of metal spheres due to thermal radiation at the bounding surface. Metall. Materi. Trans. 1(5), 1480–1482 (1970).  https://doi.org/10.1007/BF02900288 CrossRefGoogle Scholar
  24. Toledo, R.C.: Study of solidification of BiInSn eutectic metal alloy at the microgravity environment using a drop tube. (Master’s Thesis), INPE Brazil (2009)Google Scholar
  25. Toledo, R.C.: Microgravidade, Estudo da Solidificação de Ligas Metálicas Eutéticas em Ambiente de, Thesis (PhD Thesis) INPE (2013)Google Scholar
  26. Toledo, R.C., Mattos, M.B., An, C.Y., Bandeira, I.N.: Solidification of eutectic B i 32.5 I n 51 S n 16.5 alloy under microgravity using a drop tube. Mater. Sci. Forum 660-661, 587–592 (2010).  https://doi.org/10.4028/www.scientific.net/MSF.660-661.587 CrossRefGoogle Scholar
  27. Toledo, R.C., de Freitas, F.E., An, C.Y., Bandeira, I.N.: Containerless Solidification of Eutectic PbSn Alloy Droplets in a Drop Tube. Mater. Sci. Forum 727-728, 1633–1637 (2012).  https://doi.org/10.4028/www.scientific.net/MSF.727-728.1633 CrossRefGoogle Scholar
  28. Toledo, R.C., Travelho, J.S., An, C.Y., Bandeira, I.N.: Heat transfer during the solidification of eutectic PbSn alloy droplets in drop tube. Microgravity Sci. Technol. 26(2), 119–124 (2014).  https://doi.org/10.1007/s12217-014-9384-y CrossRefGoogle Scholar
  29. Turnbull, D., Cech, R.E.: Microscopic observation of the solidication of small metal droplets. J. Appl. Phys. 21, 804–810 (1950)CrossRefGoogle Scholar
  30. Walter, H.U.: Fluid sciences and materials science in space: an European Perspective. Springer, Berlin (1987)CrossRefGoogle Scholar
  31. Yang, F., Chen, Z., Cao, F., Fan, R., Kang, H., Huang, W., Yuan, Q., Xiao, T., Fu, Y., Wang, T.: Grain nucleation and growth behavior of a Sn-Pb alloy affected by direct current: an in situ investigation. J. Mater. Sci. Technol. 33(10), 1134–1140 (2017).  https://doi.org/10.1016/j.jmst.2017.05.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Associate Laboratory of Sensors and MaterialsBrazilian Space Research InstituteSão José dos CamposBrazil

Personalised recommendations