Microgravity Science and Technology

, Volume 31, Issue 2, pp 161–167 | Cite as

Investigation on Wetting and Melting Behavior of Lunar Regolith Simulant for Additive Manufacturing Application

  • Miranda FateriEmail author
  • Sebastian Pitikaris
  • Matthias Sperl
Original Article


Applying in-situ resources combined with Additive Manufacturing allows for on-demand fabrication in space. Regarding the powder-based Additive Manufacturing, wettability of the melt material affects the properties of the final product. In this study, viscosity temperatures, dilatometric sintering curves and contact angles of JSC-2 lunar simulant are studied via Hot Stage Microscopy. Experiments are conducted using platinum substrates as well as pre-sintered regolith platforms in the temperature range of 25 °C to 1450 °C. Furthermore, the relation of the viscosity temperatures and the contact angles are discussed.


Additive manufacturing Lunar regolith Moon Viscosity Contact angle 



Special thanks to, Dr. Jürgen Brillo from material physics in space institute of DLR in Cologne for his great feedbacks.


  1. Bekezhanova, V.B., Shefer, I.A.: Influence of gravity on the stability of evaporative convection regimes. Microgravity Science and Technology. 30, 543–560 (2018)CrossRefGoogle Scholar
  2. Carrier, W.: Particle size distribution of lunar soil. Geotechnical and Geoenvironmental Engineering. 129(10), 956–959 (2003)CrossRefGoogle Scholar
  3. Cesaretti, G., Dini, E., Kestelier, X.D., Colla, V., Pambaguian, L.: Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica. 93, 430–450 (2014)CrossRefGoogle Scholar
  4. Dollfus, A.: Lunar surface imaging polarimetry: 1. Roughness and grain size. Icarus. 136(1), 69–103 (1998)CrossRefGoogle Scholar
  5. P. E. d. Prampero, S. Lazzer and G. Antonutto, human powered centrifuges on the moon or Mars, Microgravity Science and Technology, vol. 21, no. 1–2, p. 209–215, 2009,Google Scholar
  6. Fateri, M., Gebhardt, A.: Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-Site Manufacturing Applications, Appleid ceramic technology, p. 46–52, (2015)CrossRefGoogle Scholar
  7. Fateri, M., Gebhardt, A., Khosravi, M.: Experimental investigation of selective laser melting of lunar regolith for in-situ applications, in International Mechanical Engineering Congress and Exposition (ASME), Houston, (2013)Google Scholar
  8. Fateri, M., Kaouk, A., Cowley, A., Siarov, S., Palou, M.V., González, F.G., Marchant, R., Cristoforetti, S., Sperl, M.: Feasibility study on additive manufacturing of recyclable objects for space applications. Additive Manufacturing. 24, 400–404 (2018)CrossRefGoogle Scholar
  9. Florez, E.S., Roslyakov, S., Iskander, M., Baamer, M.: Geotechnical properties of BP-1 lunar regolith simulant. J. Aerosp. Eng. 28(5), (2015)Google Scholar
  10. Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook, Cambridge University Press, pp. 357–474, (1991)Google Scholar
  11. Huang, Y., Zhu, C., Xiang, X.: Granular flow under microgravity: a preliminary review. Microgravity Science and Technology. 26, 131–138 (2014)CrossRefGoogle Scholar
  12. International Space Exploration Coordination Group (ISECG), 2018Google Scholar
  13. Keller, L., Mckay, D.: The origin of amorphous rims on lunar soil grains - revisited. Meteoritics. 30(5), 526 (1995)Google Scholar
  14. Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W.: Balling behavior of stainless steel and nickel powder during selective laser melting process. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012)CrossRefGoogle Scholar
  15. Li, Y., Zeng, X., Wilkinson, A.: Measurement of small cohesion of JSC-1A lunar simulant. J. Aerosp. Eng. 26(4), 882–886 (2013)CrossRefGoogle Scholar
  16. Lind, M.D., Housley, R.M., Lind, M.D., Housley, R.M.: Science. Science. 175(4021), 521–523 (1972)CrossRefGoogle Scholar
  17. Marin, M., Dubert, D., Simon, M.J., Olle, J., Gavalda, J., Ruiz, X.: ISS quasi-steady Accelerometric data as a tool for the detection of external disturbances during the period 2009-2016. Microgravity Science and Technology. 30(5), 611–634 (2018)CrossRefGoogle Scholar
  18. Montanari, F., Miselli, P., Boschetti, C., Baraldi, P., Henderson, J., Leonelli, C.: Calibration and use of the heating microscope for indirect evaluation of the viscosity and Meltability of archeological glasses. Applied Glass Science. 2(2), 161–177 (2014)CrossRefGoogle Scholar
  19. Nakamura, T., Smith, B.K.: Solar thermal system for lunar ISRU applications: development and field operation at Mauna Keaa, HI, in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, (2011)Google Scholar
  20. Pascual, M.J., Duran, A., Prado, M.O.: A new method for determining fixed viscosity points of glasses. European Journal of Glass Science and Technology Part B Physics and Chemistry of Glasses. 46(5), 512–520 (2005)Google Scholar
  21. Schwandt, C., Hamilton, J.A., Fray, D.J., Crawford, I.A.: The production of oxygen and metal from lunar regolith. Planetary and Space Science. 74, 49–56 (2012)CrossRefGoogle Scholar
  22. Slyuta, E.N.: Physical and mechanical properties of the lunar soil (a review). Sol. Syst. Res. 48(5), 330–353 (2014)CrossRefGoogle Scholar
  23. Stenzel, C., Weiss, L., Rohr, T.: Sustainable challenges on the moon. Current Opinion in Green and Sustainable Chemistry. 9, 8–12 (2018)CrossRefGoogle Scholar
  24. Taylor, L.A, Meek, T.: Microwave Sintering of Lunar Soil: Properties, Theory, and Practice. L. A. Taylor, T. T. Meek. s.l. : ASCE, July 2005, , pp. ., Journal of Aerospace engineering, vol. 18, no. 3, pp. 188–196, 2005Google Scholar
  25. Vogel, W.: Glass Chemistry, vol. 14, Jena: Springer, pp. 396–404, (1985)Google Scholar
  26. Wang, Z.R., Zhang, X.B., Wen, S.Z., Huang, Z.C., Mo, D., Qi, X.M., He, Z.H.: Experimental Investigation of the Effect of Gravity on Heat Transfer and Instability in Parallel Mini-channel Heat Exchanger, Microgravity Science and Technology, pp. 1–8, (2018)Google Scholar
  27. Young, T.: An essay on the cohesion of fluids. Philos. Trans. 95, 65–87 (1805)CrossRefGoogle Scholar
  28. Yuan, Y., Lee, T.R.: Contact angle and wetting properties. Surface Science Techniques. 51, 3–34 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany

Personalised recommendations