Advertisement

Modeling and Analysis of Ultra-Low Frequency Dynamics of Drag-Free Satellites

  • Jiaxing Zhou
  • Lei LiuEmail author
  • Zhigang Wang
Original Article
  • 17 Downloads

Abstract

This paper aims at deepening our understanding of the dynamics performance of the drag-free satellite at ultra-low frequency. A coupled modeling of dynamics which incorporate orbit dynamics, environment disturbance and interaction between the satellite and the proof mass is presented. Frequency bandwidth under investigation is extended from the micro-vibration frequency bandwidth (10 mHz to 100 mHz) to a broader bandwidth (0.1 mHz to 100 mHz) which partly covers the micro-gravity frequency bandwidth (<10 mHz). As two stringent requirements of drag-free satellite, the distance between the satellite COM (center of mass) and the proof mass COM, as well as the residual non-gravitational acceleration of the proof mass, is studied under the impacts of the atmospheric drag, the interaction between the satellite and the proof mass, and the orbit motion.

Keywords

Drag-free satellites Coupled modeling Ultra-low frequency Micro-vibration Micro-gravity 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China (grant no. 51675430 and grant no. 11402044).

Compliance with Ethical Standards

Competing interests

No competing financial interests exist.

References

  1. Bai, Y., Li, Z., Hu, M., Liu, L., Qu, S., et al.: Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST. Sensors. 17(9), 1943 (2017)CrossRefGoogle Scholar
  2. Bonny, L. S.: Overview of Disturbance Reduction Requirements for LISA. California: Jet Propulsion Laboratory, California Institute of Technology (2002)Google Scholar
  3. Canuto, E., Bona, B., Calafiore, G., Indri, M.: Drag free control for the European satellite GOCE. Part I: modelling. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (Vol. 2, pp. 1269–1274). IEEE. (2002a)Google Scholar
  4. Canuto, E., Bona, B., Calafiore, G., Indri, M.: Drag free control for the European satellite GOCE. Part II: digital control. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on (Vol. 4, pp. 4072–4077). IEEE. (2002b)Google Scholar
  5. Canuto, E., Molano, A., Massotti, L.: Drag-free control of the GOCE satellite: noise and observer design. IEEE Trans. Control Syst. Technol. 18(2), 501–509 (2010)CrossRefGoogle Scholar
  6. Canuto, E.: Drag-free and attitude control for the GOCE satellite. Automatica. 44(7), 1766–1780 (2008)MathSciNetCrossRefGoogle Scholar
  7. Canuto, E., Massotti, L.: All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica. 64(2–3), 325–344 (2009)CrossRefGoogle Scholar
  8. Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P.: A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Science and Technology. 26(3), 139–145 (2014)CrossRefGoogle Scholar
  9. Christophe, B., Marque, J. P., Foulon, B.: In-orbit data verification of the accelerometers of the ESA GOCE mission. In SF2A-2010: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (Vol. 1, p. 113) (2010)Google Scholar
  10. Ciufolini, I., Matzner, R., Gurzadyan, V., Penrose, R.: A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. The European Physical Journal C. 77(12), 819 (2017)CrossRefGoogle Scholar
  11. Conklin, J. W., Chilton, A., Olatunde, T. J., Apple, S., Parry, S., et al.: A UV LED-based Charge Management System for LISA. In American Astronomical Society Meeting Abstracts (Vol. 231) (2018)Google Scholar
  12. Danzmann, K.: LISA mission overview. Adv. Space Res. 25(6), 1129–1136 (2000)CrossRefGoogle Scholar
  13. Drinkwater, M. R., Haagmans, R., Muzi, D., Popescu, A., Floberghagen, R., et al.: The GOCE gravity mission: ESA’s first core Earth explorer. In Proceedings of the 3rd international GOCE user workshop (pp. 6–8). Noordwijk, The Netherlands: European Space Agency (2006)Google Scholar
  14. Everitt, C.W.F., Muhlfelder, B., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., et al.: The Gravity Probe B test of general relativity. Classical and Quantum Gravity. 32(22), 224001 (2015)CrossRefGoogle Scholar
  15. Fock, V.: The theory of space, time and gravitation. Elsevier (2015)Google Scholar
  16. Gerardi, D., Allen, G., Conklin, J. W., Sun, K. X., DeBra, D., et al.: Advanced drag-free concepts for future space-based interferometers: acceleration noise performance. arXiv preprint arXiv:0910.0758 (2009)Google Scholar
  17. Lange, B.: The drag-free satellite. AIAA J. 2(9), 1590–1606 (1964)CrossRefGoogle Scholar
  18. Li, H.Y., Hu, M.: Simulation and Controller Design for Drag-free and Attitude System of Single Test Mass Drag-free Satellite. Acta astronomica sinica. 52, 525–536 (2011)Google Scholar
  19. Li, Y., Luo, Z., Liu, H., Gao, R., Jin, G.: Laser Interferometer for Space Gravitational Waves Detection and Earth Gravity Mapping. Microgravity Science and Technology, 1–13 (2018)Google Scholar
  20. Liu, H., Luo, Z., Jin, G.: The Development of Phasemeter for Taiji Space Gravitational Wave Detection. Microgravity Science and Technology, 1–7 (2018)Google Scholar
  21. Nguyen, A.N., Conklin, J.W.: Three-axis drag-free control and drag force recovery of a single-thruster small satellite. J. Spacecr. Rocket. 52(6), 1640–1650 (2015)CrossRefGoogle Scholar
  22. Paris, C., Neubert, R.: Tests of LARES and CHAMP cube corner reflectors in simulated space environment. In Aerospace Conference, 2015 IEEE (pp. 1–9). IEEE. (2015)Google Scholar
  23. Prieto, D., Ahmad, Z.: A drag free control based on model predictive techniques. In American Control Conference, 2005. Proceedings of the 2005 (pp. 1527–1532). IEEE. (2005)Google Scholar
  24. Schleicher, A., Ziegler, T., Schubert, R., Brandt, N., Bergner, P., et al.: In-orbit performance of the LISA Pathfinder drag-free and attitude control system. CEAS Space Journal. 1–15 (2018)Google Scholar
  25. Shi, L., Cao, X.B., Zhang, J.X., Zhang, S.J., Dong, X.G.: Survey of drag-free satellite. Journal of Astronautics. 31(6), 1511–1520 (2010)Google Scholar
  26. Sorrentino, F., Bongs, K., Bouyer, P., Cacciapuoti, L., De Angelis, M.: A compact atom interferometer for future space missions. Microgravity Science and Technology. 22(4), 551–561 (2010)CrossRefGoogle Scholar
  27. Tamaru, H., Koyama, C., Saruwatari, H., Nakamura, Y., Ishikawa, T., et al.: Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Science and Technology. 1–9 (2018)Google Scholar
  28. Touboul, P., Métris, G., Sélig, H., Le Traon, O., Bresson, A., et al.: Gravitation and Geodesy with Inertial Sensors, from Ground to Space. AerospaceLab Journal, (12), 1–16 (2016)Google Scholar
  29. Ziegler, B., Blanke, M.: Drag-free motion control of satellite for high-precision gravity field mapping. In Control Applications, 2002. Proceedings of the 2002 International Conference on (Vol. 1, pp. 292–297). IEEE. (2002)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Aerospace Flight DynamicsXi’anChina
  2. 2.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations