Microgravity Science and Technology

, Volume 31, Issue 5, pp 615–628 | Cite as

Influence of Composition Dependent Diffusion Coefficient, Viscosity and Relaxation Time on Evaporative Rayleigh-Bénard-Marangoni Instabilities Induced by Solvent Evaporation in a Polymer Solution

  • Ramin RabaniEmail author
  • Hatim Machrafi
  • Pierre Dauby
Original Article
Part of the following topical collections:
  1. Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros


In this study, a linear stability analysis is performed for both monotonic and oscillatory modes within a horizontal polymer solution layer, which solely the solvent evaporates into air. The approach is based on general thermodynamic principles and also on the physics of the gas phase and its interactions with the liquid phase. Due to evaporation, the solvent mass fraction changes and cooling occurs at the liquid-gas interface. This can trigger solutal and thermal Rayleigh-Bénard-Marangoni instabilities in the system. For the monotonic mode, the effects of composition dependent diffusion coefficient and dynamic viscosity on the onset of Rayleigh-Bénard-Marangoni convection are studied. Moreover, the effect of different total heights of the liquid-gas system on the behavior of convection onset is considered. The results show that a variable diffusion coefficient and a variable viscosity can notably change the onset of instability for a polyisobutylene (PIB)/toluene solution. Our model for the monotonic mode is also satisfactorily compared with an experimental study. For the oscillatory mode, where the relaxation time is also composition dependent, we observe that very thin layers will be susceptible to an oscillatory instability when drying occurs in the system. Finally, an approximate model is derived exploiting the fact that the solutal Marangoni is by far the most dominant instability mechanism here. A negligible difference with respect to the full model confirms the predominance of the solutal Marangoni mechanism.


Drying of polymer solution Variable viscosity Variable diffusion coefficient Variable relaxation time Transient gas layer Rayleigh-Bénard-Marangoni instabilities Monotonic and oscillatory modes 



Financial support from F.R.S.-FNRS (“DITRASOL” PDR T.0123.16) and from BELSPO (“EVAPORATION” MAP-PRODEX project) is also acknowledged.


  1. Bassou, N., Rharbi, Y.: Role of Benard- Marangoni instabilities during solvent evaporation in polymer surface corrugations. Langmuir. 25(1), 624–632 (2008)Google Scholar
  2. Bekezhanova, V.B., Shefer, I.A.: Influence of gravity on the stability of evaporative convection regimes. Microgravity Sci Technol. 30(4), 543–560 (2018)Google Scholar
  3. Bird, R.B., Armstrong, R.C. and Hassager, O.: Dynamics of polymeric liquids. Vol. 1: Fluid mechanics (1987)Google Scholar
  4. Bormashenko, E., Balter, S., Pogreb, R., Bormashenko, Y., Gendelman, O., Aurbach, D.: On the mechanism of patterning in rapidly evaporated polymer solutions: Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning? J. Colloid Interface Sci. 343(2), 602–607 (2010)Google Scholar
  5. Bratsun, D., Kostarev, K., Mizev, A., Mosheva, E.: Concentration-dependent diffusion instability in reactive miscible fluids. Phys. Rev. E. 92(1), 011003 (2015)Google Scholar
  6. Bratsun, D.A., Stepkina, O.S., Kostarev, K.G., Mizev, A.I., Mosheva, E.A.: Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Sci Technol. 28(6), 575–585 (2016)Google Scholar
  7. Cantú, A.A.: A study of the evaporation of a solvent from a solution—application to writing ink aging. Forensic Sci. Int. 219(1–3), 119–128 (2012)Google Scholar
  8. Chatterjee, B.K., Roy, S.C.: Viscosity divergence and gelation. Radiat. Phys. Chem. 74(6), 419–425 (2005)Google Scholar
  9. Colinet, P., Legros, J.C. and Velarde, M.G.: Nonlinear dynamics of surface-tension-driven instabilities. Wiley-vch (2001)Google Scholar
  10. Dauby, P.C., Parmentier, P., Lebon, G., Grmela, M.: Coupled buoyancy and thermocapillary convection in a viscoelastic Maxwell fluid. J. Phys. Condens. Matter. 5(26), 4343 (1993)Google Scholar
  11. De Gans, B.J., Duineveld, P.C., Schubert, U.S.: Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)Google Scholar
  12. De Gennes, P.G.: Instabilities during the evaporation of a film: Non-glassy polymer+ volatile solvent. Eur Phys J E. 6(1), 421–424 (2001)Google Scholar
  13. Dondlinger, M., Colinet, P., Dauby, P.C.: Influence of a nonlinear reference temperature profile on oscillatory Bénard-Marangoni convection. Phys. Rev. E. 68(6), 066310 (2003)Google Scholar
  14. Doumenc, F., Boeck, T., Guerrier, B., Rossi, M.: Transient Rayleigh-Bénard-Marangoni convection due to evaporation: a linear non-normal stability analysis. J. Fluid Mech. 648, 521–539 (2010)zbMATHGoogle Scholar
  15. Doumenc, F., Chénier, E., Trouette, B., Boeck, T., Delcarte, C., Guerrier, B., Rossi, M.: Free convection in drying binary mixtures: solutal versus thermal instabilities. Int. J. Heat Mass Transf. 63, 336–350 (2013)Google Scholar
  16. Evans, P.L., Schwartz, L.W., Roy, R.V.: J. Colloid Interface Sci. 227, 191 (2000)Google Scholar
  17. Foster, T.: Onset of convection in a layer of fluid cooled from above. Phys. Fluids. 8(10), 1770–1774 (1965a)Google Scholar
  18. Foster, T.: Stability of a homogeneous fluid cooled uniformly from above. Phys. Fluids. 8(7), 1249–1257 (1965b)MathSciNetGoogle Scholar
  19. de Gans, B.J., Schubert, U.S.: Inkjet printing of well-defined polymer dots and arrays. Langmuir. 20(18), 7789–7793 (2004)Google Scholar
  20. Getachew, D., Rosenblat, S.: Thermocapillary instability of a viscoelastic liquid layer. Acta Mech. 55(1–2), 137–149 (1985)zbMATHGoogle Scholar
  21. Goussis, D.A., Kelly, R.E.: On the thermocapillary instabilities in a liquid layer heated from below. Int. J. Heat Mass Transf. 33(10), 2237–2245 (1990)Google Scholar
  22. Guerrier, B., Bouchard, C., Allain, C., Bénard, C.: Drying kinetics of polymer films. AICHE J. 44(4), 791–798 (1998)Google Scholar
  23. Guo, L.: Gelation and micelle structure changes of aqueous polymer solutions, Ph.D. thesis, The Pennsylvania State University,, Pennsylvania, United states (2003)Google Scholar
  24. Haut, B., Colinet, P.: Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285(1), 296–305 (2005)Google Scholar
  25. Howison, S.D., Moriarty, J.A., Ockendon, J.R., Terrill, E.L., Wilson, S.K.: A mathematical model for drying paint layers. J. Eng. Math. 32(4), 377–394 (1997)MathSciNetzbMATHGoogle Scholar
  26. Iorio, C.S., Kabov, O.A., Legros, J.C.: Thermal patterns in evaporating liquid. Microgravity Sci Technol. 19(3–4), 27–29 (2007)Google Scholar
  27. Kang, K.H., Choi, C.K.: A theoretical analysis of the onset of surface-tension-driven convection in a horizontal liquid layer cooled suddenly from above. Phys. Fluids. 9(1), 7–15 (1997)Google Scholar
  28. Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., Friend, R.H.: Inkjet printing of polymer thin film transistors. Thin Solid Films. 438, 279–287 (2003)Google Scholar
  29. Lebon, G., Parmentier, P., Teller, O., Dauby, P.C.: Bénard-Marangoni instability in a viscoelastic Jeffreys' fluid layer. Rheol. Acta. 33(4), 257–266 (1994)Google Scholar
  30. Litvinov, V.M. and De, P.P.: Spectroscopy of rubbers and rubbery materials. iSmithers Rapra Publishing (2002)Google Scholar
  31. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349(1), 331–353 (2010)Google Scholar
  32. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas: Stability of quasi-stationary and time-dependent reference profiles. Eur Phys J Spec Top. 192(1), 71–81 (2011)Google Scholar
  33. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Time-dependent Marangoni-Bénard instability of an evaporating binary-liquid layer including gas transients. Phys. Fluids. 25(8), 084106 (2013)Google Scholar
  34. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Importance of wave-number dependence of Biot numbers in one-sided models of evaporative Marangoni instability: Horizontal layer and spherical droplet. Phys. Rev. E. 91(5), 053018 (2015)MathSciNetGoogle Scholar
  35. Mokarian-Tabari, P., Geoghegan, M., Howse, J.R., Heriot, S.Y., Thompson, R.L., Jones, R.A.L.: Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting. Eur Phys J E. 33(4), 283–289 (2010)Google Scholar
  36. Münch, A., Please, C.P., Wagner, B.: Spin coating of an evaporating polymer solution. Phys. Fluids. 23(10), 102101 (2011)Google Scholar
  37. Nield, D.A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19(3), 341–352 (1964)MathSciNetzbMATHGoogle Scholar
  38. Ozawa, K.Y., Okuzono, T., Doi, M.: Diffusion process during drying to cause the skin formation in polymer solutions. Jpn. J. Appl. Phys. 45(11R), 8817 (2006)Google Scholar
  39. Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4(5), 489–500 (1958)zbMATHGoogle Scholar
  40. Rabani, R., Machrafi, H., Dauby, P.: Effect of including a gas layer on the gel formation process during the drying of a polymer solution. Eur Phys J E. 40(10), 89 (2017)Google Scholar
  41. Reichenbach, J., Linde, H.: Linear perturbation analysis of surface-tension-driven convection at a plane interface (Marangoni instability). J. Colloid Interface Sci. 84(2), 433–443 (1981)Google Scholar
  42. Sakurai, S., Furukawa, C., Okutsu, A., Miyoshi, A., Nomura, S.: Control of mesh pattern of surface corrugation via rate of solvent evaporation in solution casting of polymer film in the presence of convection. Polymer. 43(11), 3359–3364 (2002)Google Scholar
  43. Simanovskii, I.B., Viviani, A., Dubois, F., Legros, J.C.: Symmetric and asymmetric convective oscillations in a multilayer system. Microgravity Sci Technol. 22(3), 257–263 (2010)Google Scholar
  44. Simanovskii, I.B., Viviani, A., Dubois, F., Legros, J.C.: The influence of the horizontal component of the temperature gradient on nonlinear oscillatory convective regimes in multilayer system. Microgravity Sci Technol. 23(1), 25 (2011)Google Scholar
  45. Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: Rectilinear flow. Phys Fluids. 29(11), 3549–3556 (1986)zbMATHGoogle Scholar
  46. Tanner, R.I.: Engineering rheology (Vol. 52). OUP Oxford (2000)Google Scholar
  47. Toussaint, G., Bodiguel, H., Doumenc, F., Guerrier, B., Allain, C.: Experimental characterization of buoyancy-and surface tension-driven convection during the drying of a polymer solution. Int. J. Heat Mass Transf. 51(17–18), 4228–4237 (2008)zbMATHGoogle Scholar
  48. Trouette, B., Chénier, E., Doumenc, F., Delcarte, C., Guerrier, B.: Transient Rayleigh-Bénard-Marangoni solutal convection. Phys. Fluids. 24(7), 074108 (2012)Google Scholar
  49. Vidal, A., Acrivos, A.: Effect of nonlinear temperature profiles on onset of convection driven by surface tension gradients. Ind Eng Chem Fundam. 7(1), 53–58 (1968)Google Scholar
  50. Walheim, S., Schäffer, E., Mlynek, J., Steiner, U.: Nanophase-separated polymer films as high-performance antireflection coatings. Science. 283(5401), 520–522 (1999)Google Scholar
  51. Ye, H.Y., Yang, L.J., Fu, Q.F.: Spatial instability of viscous double-layer liquid sheets. Phys. Fluids. 28(10), 102101 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Thermodynamics of Irreversible PhenomenaUniversity of LiègeLiègeBelgium

Personalised recommendations