Advertisement

Experimental Investigation of Capillary-Driven Two-Phase Flow in Water/Butanol under Reduced Gravity Conditions

  • Anselmo CecereEmail author
  • Giuseppe D. Di Martino
  • Stefano Mungiguerra
Original Article
  • 21 Downloads
Part of the following topical collections:
  1. Heat pipe systems for thermal management in space

Abstract

The capillary flow of water/butanol mixture is investigated in a single groove heat pipe model on board the Airbus A310 ‘Zero-G’ of the European Space Agency. As working fluid for evaporation-based heat transfer devices like conventional or pulsating heat pipes, these kinds of mixtures give more stable behaviour and higher dry-out limit with respect to pure water because of an anomalous behaviour of the surface tension with temperature. The groove is embedded in a semi-transparent test cell that allows for the qualitative visualization of the liquid distribution along the channel and is heated and cooled at two opposite sides with an electrical resistance and a water circulation system. The evaporation/condensation process is regulated changing the power input in a range between 5 and 30 W and the liquid distribution is detected from a top window using a CCD camera and a LED illumination device. The results show that the liquid distribution is affected by the gravity level and this effect is normally masked on ground.

Keywords

Heat pipe Capillary flow Self-rewetting fluids Parabolic flight 

Notes

Acknowledgments

The authors acknowledge the financial support of the European Space Agency through the MAP (Microgravity Application Promotion) project: “Innovative Wickless Heat Pipe Systems for Ground and Space Applications (INWIP)”. ESTEC Contract number: 4000115115/15/NL/PG. Special thanks must be given to NOVESPACE team in Bordeaux for their assistance and to Dr. B. Toth (ESA).

References

  1. Abe, Y.: About self-rewetting fluids - possibility as a new working fluid. Therm. Sci. Eng. 12(3), 9–18 (2004)Google Scholar
  2. Cecere, A., Di Paola, R., Savino, R., Abe, Y., Carotenuto, L., Van Vaerenbergh, S.: Observation of Marangoni flow in ordinary and self-rewetting fluids using optical diagnostic systems. Eur. Phys. J. Spec. Top. 192, 109–120 (2011)Google Scholar
  3. Cecere, A., De Cristofaro, D., Savino, R., Ayel, V., Sole-Agostinelli, T., Marengo, M., Romestant, C., Bertin, Y.: Experimental analysis of a flat plate pulsating heat pipe with self-ReWetting fluids during a parabolic flight campaign. Acta Astronaut. 147, 454–461 (2018a)CrossRefGoogle Scholar
  4. Cecere, A., De Cristofaro, D., Savino, R., Boveri, G., Raimondo, M., Veronesi, F., Oukara, F., Rioboo, R.: Visualization of liquid distribution and dry-out in a single-channel heat pipes with different wettability. Exp. Thermal Fluid Sci. 96, 234–242 (2018b)CrossRefGoogle Scholar
  5. Chen, P., Harmand, S., Ouenzerfi, S., Schiffler, J.: Marangoni flow induced evaporation enhancement on binary sessile drops. J. Phys. Chem. B. 121(23), 5824–5834 (2017)CrossRefGoogle Scholar
  6. Dushin, V.R., Nikitin, V.F., Smirnov, N.N., Skryleva, E.I., Tyurenkova, V.V.: Microgravity investigation of capillary driven imbibition. Microgravity Sci. Technol. 30, 393–398 (2018)CrossRefGoogle Scholar
  7. Fei, L., Ikebukuro, K., Katsuta, T., Katsuta, T., Kaneko, T., Ueno, I., Pettit, D.R.: Effect of static deformation on basic flow patterns in Thermocapillary-driven free liquid film. Microgravity Sci. Technol. 29, 29 (2017)CrossRefGoogle Scholar
  8. Furrer, M., Saraceno, L., Mariani, A., Celata, G.P.: Capillary pressure influence on open channels pressure drop. Int. J. Therm. Sci. 70, 102–113 (2013)CrossRefGoogle Scholar
  9. Hu, Y., Huang, K., Huang, J.: A review of boiling heat transfer and heat pipes behaviour with self-rewetting fluids. Int. J. Heat Mass Transf. 121, 107–118 (2018)CrossRefGoogle Scholar
  10. Legros, J.C., et al.: Problems related to non-linear variations of surface tension. Acta Astronaut. 13(12), 697–703 (1986)CrossRefGoogle Scholar
  11. Limbourg-Fontaine, M.C., et al.: Marangoni convection when the surface tension increases with the temperature in normal and low gravity conditions. Adv. Space Res. 8(12), 195–203 (1988)CrossRefGoogle Scholar
  12. Mamalis, D., Koutsos, V., Sefiane, K.: On the motion of a sessile drop on an incline: effect of non-monotonic Thermocapillary stresses. Appl. Phys. Lett. 109, 231601 (2016)CrossRefGoogle Scholar
  13. Mamalis, D., Koutsos, V., Sefiane, K.: Bubble rise in a non-isothermal self-rewetting fluid and the role of Thermocapillarity. Int. J. Therm. Sci. 117, 146–162 (2017)CrossRefGoogle Scholar
  14. Mamalis, D., Koutsos, V., Sefiane, K.: Non-isothermal spreading dynamics of self-rewetting droplets. Langmuir. 34, 1916–1931 (2018)CrossRefGoogle Scholar
  15. Nishiguchi, S., Shoji, M.: Critical heat flux of butanol aqueous solution. Therm. Sci. Eng. 20(1), 1–5 (2012)Google Scholar
  16. Ouenzerfi, S., Harmand, S.: Experimental droplet study of inverted Marangoni effect of a binary liquid mixture on a nonuniform heated substrate. Langmuir. 32(10), 2378–2388 (2016)CrossRefGoogle Scholar
  17. Ouenzerfi, S., Harmand, S., Schiffler, J.: Leidenfrost self-rewetting drops. J. Phys. Chem. B. 122(18), 4922–4930 (2018)CrossRefGoogle Scholar
  18. Savino, R., Monti, R.: Heat pipes for space applications. Space Technology. 25(1), (2005)Google Scholar
  19. Savino, R., Abe, Y., Fortezza, R.: Comparative study of heat pipes with different working fluids under normal gravity and microgravity conditions. Acta Astronaut. 63, 24–34 (2008)CrossRefGoogle Scholar
  20. Savino, R., Cecere, A., Di Paola, R.: Surface tension-driven flow in wickless heat pipes with self-rewetting fluids. Int. J. Heat Fluid Flow. 30(2), 380–388 (2009a)CrossRefGoogle Scholar
  21. Savino, R., Cecere, A., Di Paola, R., Abe, Y., Castagnolo, D., Fortezza, R.: Marangoni heat pipe: an experimenton board MIOsat Italian microsatellite. Acta Astronaut. 65, 1582–1592 (2009b)CrossRefGoogle Scholar
  22. Savino, R., Di Paola, R., Cecere, A. and Fortezza, R., Self-rewetting heat transfer fluids and nano-brines for space heat pipes. Acta Astronaut., vol. 67, 9/10, 1030–1037, (2011)Google Scholar
  23. Savino, R., Cecere, A., Van Vaerenbergh, S., Abe, Y., Pizzirusso, G., Tsevecos, W., Mojahed, M., Galand, Q.: Some experimental progresses in the study of self-rewetting fluids for the SELENE experiment to be carried in the thermal platform 1 hardware. Acta Astronaut. 89, 179–188 (2013)CrossRefGoogle Scholar
  24. Savino, R., De Cristofaro, D., Cecere, A.: Flow visualization and analysis of self-rewetting fluids in a model heat pipe. Int. J. Heat Mass Transf. 115, 581–591 (2017)CrossRefGoogle Scholar
  25. Sitar, A., Golobic, I.: Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels. Int. J. Heat Mass Transf. 81, 198–206 (2015)CrossRefGoogle Scholar
  26. Su, X., Zhang, M., Han, W., Guo, X.: Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. Int. J. Heat Mass Transf. 100, 378–385 (2016)CrossRefGoogle Scholar
  27. Tsang, S., Wu, Z.H., Lin, C.H., Sun, C.: On the evaporative spray cooling with a self-rewetting fluid: chasing the heat. Appl. Therm. Eng. 132, 196–208 (2018)CrossRefGoogle Scholar
  28. Wang, Z.R., Zhang, X.B., Wen, S.Z., Huang, Z.C., Mo, D.C., Qi, X.M., He, Z.H.: Experimental investigation of the effect of gravity on heat transfer and instability in parallel mini-channel heat exchanger. Microgravity, Sci. Technol. 30, 831–838 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Industrial Engineering-Aerospace SectionUniversity of Naples “FEDERICO II”NaplesItaly

Personalised recommendations