Advertisement

Induced Exopolysaccharide Synthesis and the Molecular Mechanism in Synechocystis sp. PCC 6803 Under Clinorotation

  • Yu Zhang
  • Chunxiang Hu
  • Maobin Chen
Original Article

Abstract

Microgravity, as an unfavorable abiotic environment, may lead to changes in cell growth and metabolism. Glycogen and extracellular polysaccharide are the main forms of the intra- and extracellular carbohydrate metabolites of cyanobacteria cells. In this study, we used a 2-D clinostat to simulate microgravity, to analyze the molecular regulation of basic sugar metabolism products in cyanobacteria. During the 20 days of clinorotation, the contents of reserved glycogen and exopolysaccharide (EPS) and the transcriptional expression of related genes such as glgP (glycogen phosphorylase), epsB (exopolysaccharide transport protein), and exoD (exopolysaccharide synthesis protein) of Synechocystis sp. PCC6803 were detected. Results showed that glycogen decreased significantly during the whole period of clinorotation, while EPS increased compared with the ground control. Gene expression analysis showed that the glgP gene which regulated degradation of glycogen was induced during clinorotation, thereby providing more substances for EPS synthesis. The EPS synthesis protein gene exoD was depressed at the early stage of clinorotation, induced in the middle phase, and depressed again in the late phase. The EPS transportation protein gene epsB was depressed in the middle phase but induced at the early and late phases. It showed that the synthesis and transportation of EPS was regulated by exoD and epsB on the transcriptional level. The study was the first time to analyze the molecular mechanism on EPS biosynthesis and transportation under simulated microgravity condition. Our results not only help us to better understand the adaptive mechanism of cyanobacteria in space but also provide a basis for the local control of desert sands in enclosed space in future.

Keywords

Synechocystis Clinorotation Exopolysaccharide Glycogen Space control 

Notes

Acknowledgments

The authors gratefully acknowledge the Chinese Manned Spaceflight II, Hubei Science and Technology Support Plan Project of China (2015BAA154), and Wuhan Applied Basic Research Program of China (2015020101010074).

References

  1. Alonso-Casajús, N., Dauvillée, D., Viale, A.M., Muñoz, F. J., Baroja-Fernández, E., Morán-Zorzano, M. T., Eydallin, G., Ball, S., Pozueta-Romero, J.: Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J. Bacteriol. 188, 5266–5272 (2006)CrossRefGoogle Scholar
  2. Ball, S.G., Morell, M.K.: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant. Biol. 54, 207–233 (2003)CrossRefGoogle Scholar
  3. Ballicora, M.A., Iglesias, A.A., Preiss, J.: ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol. Mol. Biol. Rev. 67, 213–225 (2003)CrossRefGoogle Scholar
  4. Boels, I.C., Ramos, A., Kleerebezem, M., De Vos, W.M.: Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl. Environ. Microbiol. 67, 3033–3040 (2001)CrossRefGoogle Scholar
  5. Boels, I.C., Kleerebezem, M., De Vos, W.M.: Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 69, 1129–1135 (2003)CrossRefGoogle Scholar
  6. Boels, I.C., Beerthuyzen, M.M., Kosters, M.H.W., Van Kaauwen, M.P.W., Kleerebezem, M., De Vos, W.M.: Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose biosynthesis. J. Bacteriol. 186, 1239–1248 (2004)CrossRefGoogle Scholar
  7. Bryant, D.A.: The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  8. Chen, Z., Luo, Q., Yuan, L., Song, G.: Microgravity directs stem cell differentiation. Histol. Histopathol. 32, 99–106 (2017)Google Scholar
  9. De Philippis, R., Vincenzini, M.: Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 22, 151–175 (1998)CrossRefGoogle Scholar
  10. Díaz-Troya, S., López-Maury, L., Sánchez-Riego, A. M., Roldán, M., Florencio, F.J.: Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC6803: analysis of the AGP and glycogen synthases. Molec. Plant. 7, 87–100 (2014)CrossRefGoogle Scholar
  11. Ehling-Schulz, M., Bilger, W., Scherer, S.: UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179, 1940–1945 (1997)CrossRefGoogle Scholar
  12. Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 25(3), 153–159 (2013)CrossRefGoogle Scholar
  13. Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: Changes in gene expression of Arabidopsis Thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. 28, 319–329 (2016)CrossRefGoogle Scholar
  14. Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S., Chakraborty, S., Schopfer, L.M., Schopter, L.M.: Glucose oxidase from Aspergillus niger: cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J. Biol. Chem. 265, 3793–3802 (1990)Google Scholar
  15. Guisinger, M.M., Kiss, J.Z.: The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis. Am. J. Bot. 86, 1357–1366 (1999)CrossRefGoogle Scholar
  16. Hu, C., Liu, Y., Song, L., Zhang, D.: Effect of desert soil algae on the stabilization of fine sands. J. Appl. Phycol. 14, 281–292 (2002)CrossRefGoogle Scholar
  17. Iglesias, A.A., Preiss, J.: Bacterial glycogen and plant starch biosynthesis. Biochem. Educ. 20, 196–203 (1992)CrossRefGoogle Scholar
  18. Jagtap, S.S., Awhad, R.B., Santosh, B., Vidyasagar, P.B.: Effects of clinorotation on growth and chlorophyll content of rice seeds. Microgravity Sci. Technol. 23, 41–48 (2011)CrossRefGoogle Scholar
  19. Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K., Kim, W.J., Park, Y.I., Yoo, S.D., Choi, S.B., Choi, G., Park, Y.I.: Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol. 154, 1514–1531 (2010)CrossRefGoogle Scholar
  20. Klaus, D.: Clinostats and bioreactors. ASGSB Bull. 14(2), 55–64 (2001)Google Scholar
  21. Kordyum, E.L., Adamchuk, N.I.: Clinorotation affects the state of photosynthetic membranes in Arabidopsis thaliana. (L.) Heynh. J. Gravit. Physiol. 4, 77–8 (1997)Google Scholar
  22. Kozeko, L., Kordyum, E.: The stress protein level under clinorotation in content of seedling developmental program and the stress response. Microgravity Sci. Technol. 18, 254–256 (2006)CrossRefGoogle Scholar
  23. Li, H.S.: Experiment Principle and Technology of Plant Physiology and Biochemistry [M], pp 194–197. Higher Education Press, Beijing (2000)Google Scholar
  24. Liotenberg, S., Campbell, D., Rippka, R., Hourmard, J., Tandeau de, M.N.: Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142, 611–622 (1996)CrossRefGoogle Scholar
  25. Liu, Y.D., Lin, H.M., Dai, L.F., Yang, S.: Effects of spaceflight by retrievable satellite on Anabaena and Chlorella. Chin. Sci. Bull. 38, 177–180 (1993)Google Scholar
  26. Liu, Y, Cockell, CS, Wang, G, et al.: Control of Lunar and Martian dust-experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8, 75–87 (2008)CrossRefGoogle Scholar
  27. Looijesteijn, P.J., Trapet, L, de Vries, E., Abee, T., Hugenholtz, J.: Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food. Microbiol. 64, 71–80 (2001)CrossRefGoogle Scholar
  28. Maier, J.A., Cialdai, F., Monici, M., Morbidelli, L.: The impact of microgravity and hypergravity on endothelial cells. Biomed. Res. Int. 2015, 434803 (2015)CrossRefGoogle Scholar
  29. Martzivanou, M., Babbick, M., Hampp, R.: Microgravity-lated changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229, 155–162 (2006)CrossRefGoogle Scholar
  30. Nakajima, S., Shiraga, K., Suzuki, T., Kondo, N., Ogawa, Y.: Chlorophyll, carotenoid and anthocyanin accumulation in mung bean seedling under clinorotation. Microgravity Sci. Technol. 29, 427–432 (2017)CrossRefGoogle Scholar
  31. Neu, T.R., Marshall, K.C.: Bacterial polymers: physicochemical aspects of their interaction at interfaces. J. Biomater. Appl. 5, 107–133 (1990)CrossRefGoogle Scholar
  32. Nierop Groot, M.N., Kleerebezem, M.: Mutational analysis of the Lactococcus lactis NIZO B40 exopolysaccharide (EPS) gene cluster: EPS biosynthesis correlates with unphosphorylated EpsB. J. Appl. Microbiol. 103, 2645–2656 (2007)CrossRefGoogle Scholar
  33. Panoff, J.M., Priem, B., Morvan, H., Joset, F.: Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC 6803 and 6714. Arch. Microbiol. 150, 558–563 (1988)CrossRefGoogle Scholar
  34. Popova, A.F., Sytnik, K.M.: Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days. Adv. Space. Res. 17(6–7), 99–102 (1996)CrossRefGoogle Scholar
  35. Schnabl, H.: Gravistimulated effects in plants [M]. In: Horneck, G., Baumstark-khan, C. (eds.) Astrobiology. The quest for the conditions of life. Physics and astronomy online library, Springer. ISBN 3-540-42101-7, 297-313, Berlin (2002)Google Scholar
  36. Shinde, V., Brungs, S., Henry, M., Wegener, L., Nemade, H., Rotshteyn, T., Acharya, A., Baumstark-khan, C., Hellweg, C.E., Hescheler, J., Hemmersbach, R., Sachinidis, A.: Simulated microgravity modulates differentiation processes of embryonic stem cells. Cell Physiol. Biochem. 38, 1483–1499 (2016)CrossRefGoogle Scholar
  37. Sobol, M., Kordyum, E.: Distribution of calcium ions in cells of the root distal elongation zone under clinorotation. Microgravity Sci. Technol. 21, 179–185 (2009)CrossRefGoogle Scholar
  38. Su, J., Jia, S., Chen, X., Yu, H.: Morphology, cell growth, and polysaccharide production of Nostoc flagelliforme in liquid suspension culture at different agitation rates. J. Appl. Phycol. 20, 213–217 (2008)CrossRefGoogle Scholar
  39. Sytnik, K.M., Popova, A.F., Nechitailo, G.S., Mashinsky, A.L.: Peculiarities of the submicroscopic organization of Chlorella cells cultivated on a solid medium in microgravity. Adv. Space. Res. 12, 103–107 (1992)CrossRefGoogle Scholar
  40. Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., Loon, J., Magnusson, N.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int. 2014, 928507 (2014)CrossRefGoogle Scholar
  41. van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)CrossRefGoogle Scholar
  42. Verrelli, B.C., Eanes, W.F.: Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics 157, 1649–1663 (2001)Google Scholar
  43. Wai, S.N., Mizunoe, Y., Takade, A., Kawabata, S.I., Yoshida, S.I.: Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl. Environ. Microbiol. 64, 3648–3655 (1998)Google Scholar
  44. Wang, G.H., Li, G.B., Li, D.H., Liu, Y.D., Song, L.R., Tong, G.H., Liu, X.M., Cheng, E.T.: Real-time studies on microalgae under microgravity. Acta Astronaut. 55, 131–137 (2004)CrossRefGoogle Scholar
  45. Wang, G.H., Chen, L.Z., Hu, C.X., Li, G.B., Chen, K., Li, D.H., Liu, Y.D.: Studies on effects of spaceflight and irradiation on photosynthetic system of microalgae. Space Med. Med. Eng. 18, 437–441 (2005)Google Scholar
  46. Wang, G.H., Chen, H.F., Li, G.B., Chen, L.Z., Li, D.H., Hu, C.X., Chen, K., Liu, Y.: Population growth and physiological characteristics of microalgae in a miniaturized bioreactor during space flight. Acta Astronaut. 58, 264–269 (2006)CrossRefGoogle Scholar
  47. Wang, H., Li, X., Krause, L., Görög, M., Schüler, O., Hauslage, J., Hemmersbach, R., Kircher, S., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Aubry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, K.: Ditengou, F.A.: 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Sci. Technol. 28, 59–66 (2016)CrossRefGoogle Scholar
  48. Yoo, S.H., Keppel, C., Spalding, M., Jane, J.L.: Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp. PCC 6803. Int. J. Biol. Macromol. 40, 498–504 (2007)CrossRefGoogle Scholar
  49. Zhan, H.J., Gray, J.X., Levery, S.B., Rolfe, B.G., Leigh, J.A.: Functional and evolutionary relatedness of genes for exopolysaccharide synthesis in Rhizobium meliloti and Rhizobiumsp. Strain NGR234. J. Bacteriol. 172, 5245–5253 (1990)CrossRefGoogle Scholar
  50. Zhang, Y., Zheng, H.Q.: Changes in plastid and mitochondria protein expression in Arabidopsis Thaliana callus on Board Chinese Spacecraft SZ-8. Microgravity Sci. Technol. 27, 387–401 (2015)CrossRefGoogle Scholar
  51. Zhang, Y., Li, X., Ge, H.M., Wu, L., Xia, L., Wang, G., Hu, C., Liu, Y.: Influence of clinorotation on cellular structure, photosynthetic activity, carbohydrate and astaxanthin metabolism of Haematococcus pluvialis. Fresen. Environ. Bull. 21, 2017–2026 (2012a)Google Scholar
  52. Zhang, Y., Li, X., Wang, G., Hu, C., Liu, Y.: Physiological response of Synechocystis sp. PCC 6803 under clinorotation. Microgravity Sci. Technol. 24, 281–286 (2012b)Google Scholar
  53. Zhou, D., Stephens, D.S., Gibson, B.W., Engstrom, J.J., McAllister, C.F., Lee, F.K., Apicella, M.A.: Lipooligosaccharide biosynthesis in pathogenic Neisseria: cloning, identification, and characterization of the phosphoglucomutase gene. J. Biol. Chem. 269, 11162–11169 (1994)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial MicrobiologyHubei University of TechnologyWuhanPeople’s Republic of China
  2. 2.Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations