Microgravity Science and Technology

, Volume 30, Issue 4, pp 535–542 | Cite as

Space-Based Microgravity Experiments on Flame Spread over Randomly Distributed n-Decane-Droplet Clouds: Overall Flame-Spread Characteristics

  • Masato MikamiEmail author
  • Yasuko Yoshida
  • Takehiko Seo
  • Tetsuya Sakashita
  • Masao Kikuchi
  • Takuma Suzuki
  • Masaki Nokura
Original Article


This research conducted microgravity experiments on the flame spread over randomly distributed n-decane-droplet clouds aboard the Japanese Experiment Module “Kibo” on the International Space Station. 67-152 droplets were distributed at intersections of a 30 × 30 square lattice with 14-micron SiC fibers placed in a combustion chamber. One droplet on the bottom side of lattice was ignited by a hot-wire igniter to start the flame spread. The burning behavior was observed by a digital camera. This paper is the first to report the group-combustion excitation of randomly distributed droplet clouds through flame spread and its dependence on the mean droplet spacing of the droplet cloud. The results show that there exists the group-combustion-excitation-limit mean droplet spacing. The flame-spread behavior is significantly affected by the initial conditions around the group-combustion-excitation limit, where the burning lifetime of the droplet cloud attains maximum and an interesting phenomenon, such as large-scale ignition, occurs. The group-combustion-excitation-limit mean droplet spacing is greater than the flame-spread-limit droplet spacing of the linear droplet array. The overall flame-spread rate of the droplet cloud is equivalent to or slightly greater than the flame-spread rate of the linear droplet array.


Flame spread Droplet cloud Group combustion Microgravity 



This research was conducted as Kibo utilization experiments called “Group Combustion” by JAXA. We wish to thank Mr. N. Motomatsu, Mr. K. Iwai, and Mr. K. Nagata for their help in the experiments.


  1. Chiu, H.H., Liu, T.M.: Group combustion of liquid droplets. Combust. Sci. Technol. 17, 127–142 (1971)CrossRefGoogle Scholar
  2. Dietrich, D.L., Nayagam, V., Hicks, M.C., Ferkul, P.V., Dryer, F.L., Farouk, T., Shaw, B.D., Suh, H.K., Choi, M.Y., Liu, Y.C., Avedisian, C.T., Williams, F.A.: Droplet combustion experiments aboard the international space station. Micrograv. Sci. Technol. 26, 65–76 (2014)CrossRefGoogle Scholar
  3. Kato, S., Kobayashi, H., Mizuno, H., Niioka, T.: Experiments on flame spread of a fuel droplet array in a high-pressure ambience. JSME Int. J. B 41, 322–330 (1998)CrossRefGoogle Scholar
  4. Kikuchi, M., Kan, Y., Tazaki, A., Yamamoto, S., Nokura, M., Hanafusa, N., Hisashi, Y., Moriue, O., Nomura, H., Mikami, M.: Current status on preparation of fuel droplet clouds combustion experiment “Group Combustion” onboard the KIBO. Trans. JSASS Aerospace Tech. Jpn. 12, Th_25–Th_30 (2014)CrossRefGoogle Scholar
  5. Kobayashi, H., Park, J., Niioka, T.: Microgravity experiments on flame spread of an n-decane droplet array in a high-pressure environment. Proc. Combust. Inst. 29, 2603–2610 (2002)CrossRefGoogle Scholar
  6. Kono, M., Ito, K., Niioka, T., Kadota, T., Sato, J.: Current state of combustion research in microgravity. Symp. (Int.) Combust. 26, 1189–1199 (1996)CrossRefGoogle Scholar
  7. Kumagai, S., Isoda, H.: Combustion of fuel droplets in a falling chamber. Symp. (Int.) Combust. 6, 726–731 (1957)CrossRefGoogle Scholar
  8. Liu, Y.C., Xu, Y., Avedisian, C.T., Hicks, M.C.: The effect of support fibers on micro-convection in droplet combustion experiments. Proc. Combust. Inst. 35, 1709–1716 (2015)CrossRefGoogle Scholar
  9. Mikami, M., Kato, H., Sato, J., Kono, M.: Interactive combustion of two droplets in microgravity. Symp. (Int.) Combust. 25, 431–438 (1994)CrossRefGoogle Scholar
  10. Mikami, M., Oyagi, H., Kojima, N., Kikuchi, M., Wakashima, Y., Yoda, S.: Microgravity experiments on flame spread along fuel-droplet arrays using a new droplet-generation technique. Combust. Flame 141, 241–252 (2005)CrossRefGoogle Scholar
  11. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S.: Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures. Combust. Flame 146, 391–406 (2006)CrossRefGoogle Scholar
  12. Mikami, M., Mizuta, Y., Tsuchida, Y., Kojima, N.: Flame structure and stabilization of lean-premixed sprays in a counterflow with low-volatility fuel. Proc. Combust. Inst. 32, 2223–2230 (2009)CrossRefGoogle Scholar
  13. Mikami, M., Kikuchi, M., Kan, Y., Seo, T., Nomura, H., Suganuma, Y., Moriue, O., Dietrich, D.L.: Droplet cloud combustion experiment “Group Combustion” in KIBO on ISS. Int. J. Micrograv. Sci. Appl. 33, 330208 (2016)Google Scholar
  14. Mikami, M., Watari, H., Hirose, T., Seo, T., Saputro, H., Moriue, O., Kikuchi, M.: Flame spread of droplet-cloud elements with two-droplet interaction in microgravity. J. Thermal Sci. Technol. 12, JTST0028 (2017)CrossRefGoogle Scholar
  15. Mikami, M., Nomura, H., Suganuma, Y., Kikuchi, M., Suzuki, T., Nokura, M.: Generation of a large-scale n-decane-droplet cloud considering droplet pre-vaporization in “Group Combustion” experiments aboard Kibo/ISS. Int. J. Micrograv. Sci. Appl. 35, 350202 (2018a)Google Scholar
  16. Mikami, M., Motomatsu, N., Nagata, K., Yoshida, Y., Seo, T.: Flame spread between two droplets of different diameter in microgravity. Combust. Flame 193, 76–82 (2018b)CrossRefGoogle Scholar
  17. Mikami, M., Saputro, H., Seo, T., Oyagi, H.: Flame spread and group-combustion excitation in randomly distributed droplet clouds with low-volatility fuel near the excitation limit: a percolation approach based on flame-spread characteristics in microgravity. Micrograv. Sci. Technol. (2018c)
  18. Nomura, H., Takahashi, H., Suganuma, Y., Kikuchi, M.: Droplet ignition behavior in the vicinity of the leading edge of a flame spreading along a fuel droplet array in fuel-vapor/air mixture. Proc. Combust. Inst. 34, 1593–1600 (2013)CrossRefGoogle Scholar
  19. Nunome, Y., Kato, Y., Maruta, K., Kobayashi, H., Niioka, T.: Flame propagation of n-decane spray in microgravity. Proc. Combust. Inst. 29, 2621–2626 (2003)CrossRefGoogle Scholar
  20. Oyagi, H., Shigeno, H., Mikami, M., Kojima, N.: Flame-spread probability and local interactive effects in randomly arranged fuel-droplet arrays in microgravity. Combust. Flame 156, 763–770 (2009)CrossRefGoogle Scholar
  21. Saputro, H., Seo, T., Mikami, M.: Simulating flame-spread behavior in large scale of droplet clouds with considering two-droplet interaction. In: Proceedings ILASS-Asia 2014 (2014)Google Scholar
  22. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, Revised 2nd edn. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  23. Umemura, A.: Flame propagation along a linear array of liquid fuel droplets under micro-gravity condition (1st report, Inter-droplet flame propagation mode map). JSME Trans. B 68, 2422–2428 (2002). (in Japanese)CrossRefGoogle Scholar
  24. Umemura, A., Takamori, S.: Percolation theory for flame propagation in non- or less-volatile fuel spray: a conceptual analysis to group combustion excitation mechanism. Combust. Flame 141, 336–349 (2005)CrossRefGoogle Scholar
  25. Williams, F.A.: Combustion Theory, 2nd edn. Benjamin/Cummings, Menlo Park (1985)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYamaguchi UniversityUbeJapan
  2. 2.JEM Utilization CenterJapan Aerospace Exploration AgencyTsukubaJapan
  3. 3.IHI Inspection & Instrumentation Co., Ltd.TachikawaJapan

Personalised recommendations